Module guide

Dokumentation

Empf. Vorkenntnisse

Das Modul ist interdisziplinär ausgerichtet unter Berücksichtigung von Grundlagenwissen aus dem beanspruchungs-, fertigungs- und werkstoffgerechten Gestalten und Dimensionieren einfacher Maschinenelemente.

Lehrform Vorlesung/Übung/Labor
Lernziele

Technische Dokumentation:

  • Die Lehrveranstaltung vermittelt Grundkenntnisse zur normgerechten technischen Darstellung von Bauteilen und Baugruppen des Maschinenbaus.
  • Die Studierenden verschaffen sich in der Veranstaltung "Technische Dokumentation" einen Überblick über die technischen Regelwerke und die Bedeutung der nationalen und internationalen Normung für die Konstruktion und die Anwendung von Maschinenelementen.
  • Die Studierenden erlernen die grundlegenden Techniken des technischen Zeichnens als Informationsmittel für Konstruktion und Fertigung, das Erstellen und Lesen technischer Zeichnungen.
  • Die Studierenden verstehen die Bedeutung und Klassifikation möglicher Gestaltabweichungen technischer Oberflächen von Maschinenelementen.
  • Die Studierenden lernen die Notwendigkeit von Toleranzen, Passungssystemen und Oberflächenangaben für die wirtschaftliche Fertigung und das Zusammenwirken von Maschinenelementen kennen.

Grundlagen CAD:

  • Die Studierenden erlernen in der Veranstaltung Grundlagen CAD den Umgang mit einem CAD-Arbeitsplatz, haben einen Überblick über Einsatzbereiche von CAD-Systemen und verstehen die Bedeutung von CAD-Systemen für den betrieblichen Informationsfluss.
  • Die Studierenden erwerben Grundkenntnisse über allgemeine Methoden und Arbeitstechniken zur 3D-Modellierung und Konstruktion von Bauteilen, Baugruppen, zur Definition von Normteilen sowie zur Ableitung von Fertigungszeichnungen.
  • Die Studierenden müssen nach Abschluss des Moduls in der Lage sein, selbstständig einfache Bauteile und Baugruppen mit einem CAD-System zu modellieren und zu visualisieren sowie daraus technische Zeichnungen zu generieren.
  • Die Studierenden sammeln ihre ersten Erfahrungen in der industriellen Projektarbeit durch das Arbeiten und Problemlösen in Gruppen. Es werden ergänzende Hinweise vermittelt.

Hands-on-Labor:

  • Analyse technischer, besonders mechanischer Systeme und Beschreibung und Verstehen der Wirkzusammenhänge und des jeweiligen Aufbaus der Systeme.
  • Beispielhafte Systeme sind verschraubte und mit Dichtungen versehene Rohrleitungen, Stirnradgetriebe und schaltbare Planetengetriebe.
  • Die Studierenden sind in der Lage mechanische Systeme zu analysieren, deren Wirkzusammenhänge zu erkennen und deren Aufbau zu beschreiben.
  • Die Studierenden können die in den parallel gehörten Fächern gelernten Kenntnisse auf die analysierten Systeme übertragen. Insbesondere die Fächer Technische Dokumentation, Werkstoffkunde und Technische Mechanik I sind hier zu nennen.
  • Die Studierenden erlernen das Zerlegen und Montieren einfacher mechanischer Systeme und erhalten einen ersten Einblick in die montagegerechte und fertigungsgerechte Konstruktion.


Dauer 2 Semester
SWS 6.0
Aufwand
  • Lehrveranstaltung:90 h
  • Selbststudium/
    Gruppenarbeit:150 h

  • Workload:240 h
Leistungspunkte und Noten

Technische Dokumentation: Klausurarbeit, 90 Min.

Hands-On-Labor: Referat

Grundlagen CAD: Laborarbeit

ECTS 8.0
Modulverantw.

Prof. Dr.-Ing. Ali Daryusi

Max. Teilnehmer 0
Empf. Semester 1 und 2
Häufigkeit jedes Semester
Verwendbarkeit

MA, ME - Grundstudium

Veranstaltungen Grundlagen CAD
Art Labor
Nr. M+V823
SWS 2.0
Lerninhalt
  • Einführung in die Arbeit 3D-CAD-Systemen und Systemgrundlagen: Funktionsstruktur und Aufbau von CAD-Systemen, Benutzeroberfläche, Ansichtsmanager, Modellinformationen
  • Basiskonstruktionselemente und Modellreferenzen: Koordinatensysteme, Bezugsebenen und Achsen
  • Skizzieren und Skizziermethodik: Erzeugung, Bemaßung udn Bedingungen von Skizzen
  • Bauteilmodellierung und -bearbeitung: Profil- und Rotationskörper, gezogene Teile, Verbundkörper, Rundungen und Fasen, Bohrungen und Gewinde, Rippen, Erstellung von Mustern, Kopieren, Spiegeln und Bewegen von Konstruktionselementen, Flächenmodellierung, Modellanpassungen, Einsatz von Normteilbibliotheken
  • Baugruppenmodellierung: Einbau, Austausch und Anpassung von Komponenten, Entwurf von Baugruppenstruktur, Skelettmodelle, Baugruppeninformation
  • Zeichnungsableitung aus dem 3D-Modell: Zeichnungseinstellungen, Ableitung normgerechter Zusammenbauzeichnung und Einzelteilzeichnungen, Erzeugung von Modellansichten, Bemaßung , Form- und Lageabweichungen, Oberflächenangaben, Passungen, Erstellung von Stücklisten
Literatur
  • Köhler, P. (Hrsg.), CAD-Praktikum für den Maschinen- und Anlagenbau mit PTC Creo, Springer Vieweg Verlag, 2016
  • Wyndorps, P., 3D-Konstruktion mit Creo Parametric 3.0, 2. Auflage, Europa-Lehrmittel Verlag, 2015
Technische Dokumentation
Art Vorlesung/Übung
Nr. M+V822
SWS 2.0
Lerninhalt
  • Grundlagen des Technischen Zeichnens: Zeichnungsformate, Projektionsarten, Anordnung der Ansichten und Linienarten in technischen Zeichnungen
  • Bemaßungsregeln und Maßeintragung in Zeichnungen, Längen- und Winkelmaße, technische Oberflächen, Rauheitskenngrößen, Maßtoleranzen, Toleranzangaben, Passungsangaben, Form- und Lagetoleranzen
  • Werkstück-Ansichten, Einzelheiten, Freistiche, Zentrierbohrungen, Schnittdarstellung
  • Bemaßung von Kegel, Pyramide und Keil, Angaben zur Oberflächenbehandlung (Härteangaben)
  • Darstellung von Gewinden und Gewindefreistichen, Schrauben, Senkungen,   Werkstückkanten
  • Darstellung und Bemaßung von Welle-Nabe-Verbindungen, Wellendichtungen, Federn, Sicherungsringen, Wälzlagern, Zahnrädern, Schweißverbindungen,  Schweißnahtarten
  • Positionsnummern, Zeichnungsarten, Schriftfelder, Stücklisten und Faltung auf Ablageformat.
  • Die zu behandelnden Themen werden anhand von Übungen vertieft.
Literatur
  • Hesser, W, Hoischen, H.: Technisches Zeichnen - Grundlagen, Normen, Beispiele, Darstellende Geometrie, 35. Auflage, Cornelsen-Verlag Berlin, 2016
  • Tabellenbuch Metall mit Formelsammlung, 47. Auflage, Europa-Lehrmittel Verlag, 2016
  • Böttcher, Forberg: Technisches Zeichnen. Grundlagen, Normung, Darstellende Geometrie und Übungen, 26. Auflage, Springer Vieweg Verlag, 2013
  • Labisch, Weber: Technisches Zeichnen - Grundkurs, 4. Auflage, Springer Vieweg Verlag, 2013
  • Daryusi A. Technisches Zeichnen. Manuskript, HS Offenburg. 2017
Hands-On-Labor
Art Labor
Nr. M+V700
SWS 2.0
Lerninhalt

Zerlegen und Montieren technischer, besonders mechanischer Systeme. Beispielhafte Systeme sind verschraubte und mit Dichtungen versehene Rohrleitungen, Stirnradgetriebe und schaltbare Planetengetriebe.

Analysieren der Systeme und Beschreibung der Wirkzusammenhänge und des jeweiligen Aufbaus.

Verknüpfung und Festigung von Lerninhalten anderer Veranstaltungen (z. B. Technische Dokumentation, Werkstofftechnik, Technische Mechanik I) anhand der analysierten Systeme.


Elektrotechnik I

Empf. Vorkenntnisse

Gute Kenntnisse in Mathematik und Physik

Lehrform Vorlesung
Lernziele

Die Studierenden müssen in der Lage sein, grundlegende elektrotechnische Aufgabenstellungen zu lösen. Dazu gehört das Berechnen von Gleich- und Wechselstromkreisen, von Leistungen im elektrischen Stromkreis, von Kräften und Energien in Feldern einschließlich der messtechnischen Erfassung der elektrischen Grundgrößen. Die Studierenden sollen die elektrotechnischen Grundlagen auf andere Problemfelder übertragen und anwenden können.

Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:60 h

  • Workload:120 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min.

ECTS 4.0
Modulverantw.

Prof. Dr.-Ing. Grit Köhler

Max. Teilnehmer 0
Empf. Semester 2
Häufigkeit jedes Semester
Verwendbarkeit

Bachelor aBM, BM, BT, ES, MA, ME, UV - Grundstudium

Veranstaltungen Elektrotechnik I
Art Vorlesung
Nr. M+V812
SWS 4.0
Lerninhalt
  • ELEKTROTECHNISCHE GRUNDBEGRIFFE
    elektrische Ladung, elektrischer Strom, elektrische Spannung, elektrischer Widerstand, elektrische Leistung, elektrische Energie
  • DER ELEKTRISCHE GLEICHSTROMKREIS
    Netzwerke aus linearen passiven und aktiven Zweipolen, Kirchhoffsche Gesetze, Stromkreisberechnung (Zweigstromanalyse, Maschenstromanalyse, Überlagerungsmethode, Zweipoltheorie), Leistungsumsatz im Stromkreis, Leistungsanpassung
  • DAS ELEKTRISCHE FELD
    Feldbegriff (Quellen- und Wirbelfelder, homogene und inhomogene Felder), elektrisches Feld im Nichtleiter (elektrostatisches Feld und zeitlich veränderliches elektrisches Feld), Verschiebungsfluss und Verschiebungsflussdichte, Verschiebungsstrom, elektrische Influenz, Faradayscher Käfig, Verschiebungs- und Orientierungspolarisation, Kapazität und Kondensatoren, Reihen- und Parallelschaltung von Kondensatoren, Energie und Kraftwirkungen im elektrischen Feld
  • DAS MAGNETISCHE FELD
    magnetischer Fluss, magnetische Induktion, magnetische Feldstärke, Materialeinfluss (insbesondere Ferromagnetismus), Durchflutungsgesetz, magnetische Kreise und ihre Berechnung, Analogiebeziehungen zwischen dem elektrischen Strömungsfeld und dem magnetischen Kreis, Analogiebeziehungen zwischen elektrischen und magnetischen Feldern, Ruhe- und Bewegungsinduktion (Lorentzkraft), elektromagnetische Felder, Selbst- und Gegeninduktivität, Induktivität und Spulen, Reihen- und Parallelschaltung von Spulen
  • DER WECHSELSTROMKREIS
    Erzeugung von Wechselspannungen, Wechselgrößen und deren Kennwerte, Leistungen im Wechselstromkreis
  • AUSGEWÄHLTE ANWENDUNGSBEISPIELE

 

 

 

 

 

Literatur
  • Aufgabensammlung zu den Grundlagen der Elektrotechnik, Gert Hagmann (Aula-Verlag Wiesbaden, 2000)
  • Grundlagen der Elektrotechnik zum Selbststudium, Dieter Nelles (VDE-Verlag Berlin Offenbach),     Band 1: Gleichstromkreise (2002), Band 2: Elektrische Felder (2003), Band 3: Magnetische Felder (2003), Band 4: Wechselstromkreise (2003)

Grundlagen der Mathematik I

Empf. Vorkenntnisse

Erforderliche Vorkenntnisse: Schulkenntnisse Mathematik, evtl. Brückenkurs

Lehrform Vorlesung
Lernziele

Die Studierenden besitzen das Rüstzeug, wesentliche Wirkungszusammenhänge in den angewandten Wissenschaften nachvollziehen zu können und konstruktiv damit umgehen können. Die Studierenden beherrschen die mathematische Fachterminologie, das Instrumentarium und das grundsätzliche Herangehen an Problembehandlungen so, dass sie diese auf konkrete ingenieurmäßige Aufgaben übertragen und anwenden können. Die Studierenden sind in der Lage, Probleme aus der Praxis mit Hilfe des Vorlesungsstoffs selbstständig zu lösen.

Dauer 1 Semester
SWS 6.0
Aufwand
  • Lehrveranstaltung:90 h
  • Selbststudium/
    Gruppenarbeit:120 h

  • Workload:210 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min.

ECTS 7.0
Modulverantw.

Prof. Dr. rer. nat. Harald Wiedemann

Max. Teilnehmer 0
Empf. Semester 1
Häufigkeit jedes Semester
Verwendbarkeit

aBM, BM, BT, ES, MA, ME, UV - Grundstudium

Veranstaltungen Mathematik I
Art Vorlesung
Nr. M+V800
SWS 6.0
Lerninhalt
  • Wiederholung der Grundlagen
    Zunächst wird das Basiswissen wiederholt (Mengen, Zahlen, Gleichungen und Ungleichungen, Binome, Rechnen mit Brüchen, Potenzen und Logarithmen), Grundlagen der Aussagenlogik
  • Vektoralgebra und analytische Geometrie
    Nach Einführung der Grundbegriffe und Grundlagen werden die Anwendungsmöglichkeiten besprochen und die Anwendung im 3-dimensionalen Raum geübt, der Zusammenhang mit linearen Gleichungssystemen wird dargestellt
  • Funktionen und Kurven
    Anhand wichtiger Funktionen (ganz- und gebrochenrationale Funktionen, Potenz- und Wurzelfunktionen, trigonometrische Funktionen, Exponential- und Logarithmusfunktion, Hyperbelfunktion) wird der Funktionsbegriff und die Darstellung von Funktionen geübt. Den Abschluss bilden Betrachtungen zur Stetigkeit und zum Grenzwert.
  • Differentialrechnung
    Über die Vertiefung des Grenzwertbegriffs wird die Differentialrechnung eingeführt. Die Ableitungsregeln werden an verschiedenen praktischen Beispielen geübt.
  • Folgen und Reihen
    Der Begriff der Folge wird eingeführt, es werden unendliche Reihen, Potenzreihen und die Taylorentwicklung besprochen.
  • Integralrechnung
    Abschluss bildet die Integralrechnung. Bestimmte und unbestimmte Integrale, Ingerationsregeln und -methoden werden besprochen.
Literatur
  • Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Vieweg, Papula, L. (Vieweg, 2000) 
  • Arens et al: Mathematik, (Spektrum Akademischer Verlag, 2011)

Grundlagen der Mathematik II

Empf. Vorkenntnisse

Erforderliche Vorkenntnisse: Stoff des Moduls Mathematik I

Lehrform Vorlesung
Lernziele

Die Studierenden besitzen das Rüstzeug, wesentliche Wirkungszusammenhänge in den angewandten Wissenschaften nachvollziehen zu können und konstruktiv damit umgehen können. Die Studierenden beherrschen die mathematische Fachterminologie, das Instrumentarium und das grundsätzliche Herangehen an Problembehandlungen so, dass sie diese auf konkrete ingenieurmäßige Aufgaben übertragen und anwenden können. Die Studierenden sind in der Lage, Probleme aus der Praxis mit Hilfe des Vorlesungsstoffs selbstständig zu lösen.

Durch die bewusste Auswahl an Beispielen und Übungsaufgaben wird der Stoff des Moduls Mathematik I gefestigt.

Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:90 h

  • Workload:150 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min.

ECTS 5.0
Modulverantw.

Prof. Dr. rer. nat. Harald Wiedemann

Max. Teilnehmer 0
Empf. Semester 2
Häufigkeit jedes Semester
Verwendbarkeit

aBM, BM, BT, ES, MA, ME, UV - Grundstudium

Veranstaltungen Mathematik II
Art Vorlesung
Nr. M+V801
SWS 4.0
Lerninhalt
  • Lineare Algebra
    Nach Einführung von Determinanten und Matrizen wird der Zusammenhang zu linearen Gleichungssystemen hergestellt. Eigenwerte und Eigenvektoren werden besprochen
  • Komplexe Zahl
    Die komplexe Zahl und ihre Darstellungsmöglichkeiten werden diskutiert. Dabei werden die Rechenregeln eingeführt und Möglichkeit der Darstellung der komplexe Funktion einer reellen Veränderlichen als Ortskurve vertieft, ebenso die technischen Anwendungen.
  • Gewöhnliche Differentialgleichungen
    Die Bedeutung der Differentialgleichung und der technische Unterschied zwischen Anfangs- und Randwertproblem werden erläutert. Lösungsmethoden für Differentialgleichungen 1. Ordnung und 2. Ordnung mit konstanten Koeffizienten werden hergeleitet. Die Lösung von linearen Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten wird sowohl mit dem Exponentialansatz als auch über die Laplace-Transformation gezeigt
  • Differential- und Integralrechnung für Funktionen von mehreren Variablen
    Den Abschluss bildet die Betrachtung von Funktionen mit mehreren Variablen sowie die Differentiation und Integration dieser Funktione. Substitutionsregeln für Funktionen mehrerer Variabler werden besprochen und auf Koordinatentransformationen angewendet
Literatur
  • Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler Band 2, Vieweg, Papula, L. (Vieweg, 2000) 
  • Arens et al: Mathematik, (Spektrum Akademischer Verlag, 2011)

Grundlagen Werkstoffe

Empf. Vorkenntnisse

Gute Kenntnisse der Chemie und Physik auf dem Niveau der Sekundarstufe 2

Lehrform Vorlesung
Lernziele

Der Erwerb grundlegender Kenntnisse im Bereich der Chemie befähigt die Studierenden zur Erklärung von Verhalten und Eigenschaften von metallischen und nicht-metallischen Werkstoffen. Darüber hinaus sind die Studierenden in der Lage auf Grund fundierter Kenntnisse im Bereich metallischer Werkstoffe, diese in Hinsicht auf ihre Eigenschaften und Verhalten auszuwählen. Die so erworbenen Kenntnisse befähigen die Studierenden dazu ihr Wissen in weiterführenden Lehrveranstaltungen zu vertiefen, sowie im Rahmen von Labortätigkeiten und werkstoffbasierten Entwicklungsprojekten einzubringen.

Die Studierenden sind ebenso in der Lage qualifizierte Materialbeschaffungen im Bereich metallischer Werkstoffe zu tätigen sowie Metallkonstruktionen hinsichtlich Festigkeit zu bewerten.

Dauer 1 Semester
SWS 6.0
Aufwand
  • Lehrveranstaltung:90 h
  • Selbststudium/
    Gruppenarbeit:90 h

  • Workload:180 h
Leistungspunkte und Noten

Klausurarbeit, 120 Min.

ECTS 6.0
Modulverantw.

Prof. Dipl.-Ing. Dietmar Kohler

Max. Teilnehmer 0
Empf. Semester 1
Häufigkeit jedes Semester
Verwendbarkeit

MA, ME, ES - Grundstudium

Veranstaltungen Chemie
Art Vorlesung
Nr. M+V803
SWS 2.0
Lerninhalt
  • Atome: Aufbau, Isotope, Modelle 
  • Periodensystem der Elemente: Perioden und Gruppen, Periodizität der Eigenschaften: Metallcharakter, Ionisierungsenergie, Elektronegativität 
  • Kernreaktionen: Radioaktivität: natürliche und künstliche, Zerfallskinetik, Kernreaktionen, Kernspaltung, Kernfusion 
  • Chemische Bindung: Atombindung: Einfach-, Doppel-, Dreifachbindung, polare Atombindung, Ionenbindung, Metallbindung, zwischenmolekulare Bindungen 
  • Aggregatzustände: Gasförmiger Zustand: ideale u. reale Gase,
    Flüssiger Zustand: Verdampfungsprozess, Siede- und Gefrierpunkt,
    Fester Zustand: Kristallgitter 
  • Thermodynamik, Kinetik chemischer Reaktionen: Energetik chemischer Reaktionen, Aktivierungsenergie, Reaktionsgeschwindigkeit 
  • Stöchiometrie: chemische Formeln und Molekulargewicht, Stoffmenge
    und Avogadrokonstante, Molvolumen, Reaktionen in Lösung, chemische
    Reaktionsgleichungen, stöchiometrische Massenberechnungen 
  • Chemisches Gleichgewicht: Massenwirkungsgesetz, Prinzip vom
    kleinsten Zwang 
  • Säuren und Basen: Ionenprodukt des Wassers, pH-Wert, Säure- und
    baseverhalten, Säure- und Basegleichgewichte: pH-Wert-Berechnungen 
  • Redoxreaktionen 
  • Elektrochemie: Elektrolyse, Galvanische Zelle, Korrosion 
  • Ausgewählte Anwendungsbeispiele
Literatur
  • Chemie, C.Mortimer, U. Müller (Georg Thieme Verlag, Stuttgart, New York, 2003)
  • Chemie für Ingenieure, Vinke, Marbach (Oldenbourg, 2013)

 

Werkstofftechnik I
Art Vorlesung
Nr. M+V809
SWS 4.0
Lerninhalt

In der Vorlesung werden aufbauend auf den werkstoffkundlichen Grundlagen der Metalle die Änderungen der Eigenschaften durch z. B Legierungselemente und Wärmebehandlungen vorwiegend am Beispiel Stahl entwickelt, beschrieben und erläutert. Dabei werden Tafelarbeit, und Overheadfolien eingesetzt.

Grundlagen der Kristallographie,
Eigenschaften der Metalle
Grundlagen der Legierungen,
Zweistoffsyteme mit Eisen-Kohlenstoffdiagramm
Grundlagen der Wärmebehandlung von Stahl
Werkstoffprüfung
Einfluss der Legierungselemente auf die Eigenschaften von Stahl
Bezeichnungssystem der Stähle
Stahlgruppen
Besprechung ausgewählter Stähle nach EN Normen
Ausblick auf Nichteisenmetalle.

Literatur
  • Werkstoffkunde, Bargel, Schulze (2000)
  • Werkstoffkunde und Werkstoffprüfung, Weisbach (2000)

Maschinenelemente I

Empf. Vorkenntnisse

Die klassischen Maschinenelemente gehören zum grundlegenden Rüstzeug des modernen, gut ausgebildeten Ingenieurs. Bei der Berechnung von Maschinenelementen werden zahlreiche Gesetze und Rechenverfahren der technischen Mechanik und der Festigkeitslehre sowie Empfehlungen der Werkstofftechnik und der technischen Dokumentationen angewendet. Deshalb sind Grundkenntnisse auf diesen Fachgebieten erforderlich.

Lehrform Vorlesung/Übung
Lernziele
  • Die Absolventen dieser Lehrveranstaltung erlernen die Grundlagen und die Vorgehensweise der FKM-Richtlinie bzw. der DIN 743 zur Durchführung eines statischen Festigkeitsnachweises und eines Dauerfestigkeitsnachweises und zur Bestimmung einer Sicherheitszahl.
  • Die Studierenden können festigkeitsmindernde Einflüsse wie Kerbwirkung, Oberflächen- und Größenfluss erfassen.
  • Durch die Behandlung der Thematik zur Festigkeitsberechnung und Gestaltung von Wellen, Achsen, Bolzen- und Stiftverbindungen erlangen die Studierenden das erste Grundlagenwissen über die Auslegung von technischen Systemen. Außerdem erwerben sie die Fähigkeit, diese Grundkenntnisse auf Fragestellungen in der Praxis anzuwenden.
  • Zur Vertiefung der in der Vorlesung erworbenen Kenntnisse sind Rechenaufgaben zur Vorlesungsstoff mit Erläuterungen vorgesehen.
  • Zum Erfassen der Funktion der Berechnung und Gestaltung von Maschinenelementen sind zwei konstruktive Hausarbeiten durchzuführen.
Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:60 h

  • Workload:120 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min., und Hausarbeit

ECTS 4.0
Modulverantw.

Prof. Dr.-Ing. Ali Daryusi

Max. Teilnehmer 0
Empf. Semester 2
Häufigkeit jedes Semester
Verwendbarkeit

Bachelor aBM, BM - Hauptstudium

Bachelor MA, ME - Grundstudium

Veranstaltungen Maschinenelemente/Konstruktionslehre I
Art Vorlesung/Übung
Nr. M+V815
SWS 4.0
Lerninhalt
  • Einführung in die Maschinen- und Konstruktionselemente.
  • Grundlagen der Dimensionierungsansätze und Festigkeitsberechnungen: Belastungen und Beanspruchungen, Grundbeanspruchungsarten (Zug/Druck, Biegung, Torsion und Querkraftschub), Flächenpressung und Wälzpaarungen, Vergleichsspannungshypothesen, Zeitlicher Beanspruchungsverlauf, Belastungsfälle, Dauerfestigkeitsschaubilder und Wöhlerlinie, Größeneinflussfaktoren, Kerbspannungen, Formzahlen, Stützwirkung, Kerbwirkungszahlen, Festigkeitskonzepte, Berechnungsrichtlinien (FKM Richtlinie bzw. DIN 743).
  • Tragfähigkeitsberechnung von Wellen und Achsen nach DIN 743 bzw. FKM Richtlinie: Funktion und Wirkung , Gestaltung und Vordimensionierung von Wellen und Achsen, Werkstoff-Festigkeitskennwerte, statischer Nachweis des Vermeidens von bleibender Verformung, Anriss oder Gewaltbruch, dynamischer Nachweis des Vermeidens von Dauerbrüchen, Kontrollberechnungen.
  • Stift- und Bolzenverbindungen
  • Schweißverbindungen
Literatur

 

  • Schlecht B. Maschinenelemente 1: Festigkeit, Wellen, Verbindungen, Federn, Kupplungen.  Pearson Studium Verlag, 2015
  • Niemann G, Winter H, Höhn B.-R. Maschinenelemente: Band I: Konstruktion und Berechnung von Verbindungen, Lagern, Wellen. 4. Auflage, Berlin: Springer Verlag. 2005
  • Roloff/Matek. Maschinenelemente: Normung, Berechnung, Gestaltung. 23. Auflage, Wiesbaden: Springer Vieweg Verlag. 2017
  • DIN 743. Tragfähigkeitsberechnung von Wellen und Achsen. Teil I, II und III. deutsche Norm. 2012
  • FKM-Richtlinie. Rechnerischer Festigkeitsnachweis für Maschinenbauteile. Forschungskuratorium Maschinenbau (FKM), Frankfurt/Main: VDMA-Verlag. 2012
  • Daryusi A. Vorlesungsmanuskript zu Maschinenelementen 1. HS Offenburg. 2017

 


Mechanik I

Empf. Vorkenntnisse

Mathematik- und Physikkenntnisse auf dem Niveau der Sekundarstufe II, insbesondere Vektorrechnung

Lehrform Vorlesung
Lernziele

Die Studierenden können

  • mit den Begrifflichkeiten der Statik sicher umgehen
  • Linien-, Flächen und Volumenschwerpunkte bestimmen
  • mechanische Systeme einordnen und in analysierbare Teilsysteme zerlegen
  • die Lösbarkeit von Teilsystemen beurteilen
  • Lagerkräfte und Schnittlasten ermitteln
  • Reibungseinflüsse beurteilen und berücksichtigen
Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:90 h

  • Workload:150 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min.

ECTS 5.0
Modulverantw.

Prof. Dr.-Ing. Michael Volz

Max. Teilnehmer 0
Empf. Semester 1
Häufigkeit jedes Semester
Verwendbarkeit

aBM, BM, BT, ES, MA, ME, UV - Grundstudium

Veranstaltungen Technische Mechanik I
Art Vorlesung
Nr. M+V806
SWS 4.0
Lerninhalt
  • Einführung, Lehrsätze der Statik
  • Kraftvektoren, Vektorrechnung
  • Gleichgewicht am Punkt
  • Resultierende von Kräftesystemen
  • Gleichgewicht eines starren Körper
  • Fachwerke und Systeme starrer Körper
  • Schnittgrößen
  • Reibung
  • Schwerpunkte
Literatur
  • Hibbeler R. Technische Mechanik 1: Statik. München: Pearson Education. 2006
  • Gross D, Hauger W, Schnell W, et al. Technische Mechanik: Band 1: Statik. Berlin: Springer. 2004
  • Romberg O, Hinrichs N. Keine Panik vor Mechanik!. Wiesbaden: Vieweg. 2006

Mechanik II

Empf. Vorkenntnisse

Technische Mechanik I, Mathematik I, Werkstofftechnik I

Lehrform Vorlesung
Lernziele

Die Studierenden können

  • Zug/Druck-, Biege- und Schubspannungen in mechanischen Strukturen berechnen und daher kritische Stellen bezüglich des Versagens von mechanischen Strukturen erkennen
  • Spannungen und Verformungen aus Temperaturänderungen ermitteln
  • Zusammenhänge zwischen Spannungen und Dehnungen bei linear-elastischem Werkstoffverhalten herstellen
  • komplexe Belastungssituation als Überlagerung einfacher Belastungsfälle zusammensetzen
  • mehrachsige Spannungs- und Verzerrungszustände analysieren und entsprechende Festigkeitshypothesen auswählen und anwenden
Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:90 h

  • Workload:150 h
Leistungspunkte und Noten

Klausurarbeit, 90 Min.

ECTS 5.0
Modulverantw.

Prof. Dr.-Ing. Thomas Seifert

Max. Teilnehmer 0
Empf. Semester 2
Häufigkeit jedes Semester
Verwendbarkeit

aBM, BM, ES, MA, ME - Grundstudium

Veranstaltungen Technische Mechanik II
Art Vorlesung
Nr. M+V807
SWS 4.0
Lerninhalt
  • Lineare Elastizitätstheorie (mit Wärmedehnung)
  • Hookesches Gesetz für Normal- und Schubspannungsbeanspruchung
  • Zug und Druck
  • Torsion (rotationssymmetrische Vollquerschnitte, geschlossene dünnwandige Hohlquerschnitte)
  • Biegung
  • Querkraftschub
  • Spannungstransformation, Mohrscher Spannungskreis, (Spannungshypothesen)
  • Knicken
  • Wöchentliche Übungen

 

Literatur
  • Technische Mechanik 2, Festigkeitslehre, Russell C. Hibbeler (Pearson, 2006)
  • Keine Panik vor Mechanik, Romberg, Oliver. Hinrichs, Nikolaus, Wiesbaden, 2008
  • Technische Mechanik 2: Elastostatik, Gross D, Hauger W, Schnell W (Springer, 2000)
  • Technische Mechanik Band 2: Festigkeitslehre, B. Assmann (Oldenbourg, 2003)
  • Technische Mechanik, Band 3: Festigkeitslehre, Holzmann G, Meyer H, Schumpich G (Teubner, 2000)

Physik

Empf. Vorkenntnisse

Gute Kenntnisse in Mathematik und Physik auf dem Niveau der Sekundarstufe. Der Mathematik-Brückenkurs wird dringend empfohlen!

Lehrform Vorlesung/Labor
Lernziele

Die Studierenden verstehen die wesentlichen physikalischen und technischen Grundlagen der Physik. Sie sind in der Lage, die entsprechenden Prinzipien und Gesetze mathematisch zu formulieren und zu interpretieren. Sie besitzen klare Vorstellungen über die Anwendbarkeit der behandelten Gesetze einschließlich der Grenzen der verwendeten Modelle.
Insbesondere lernen die Studierenden, die erworbenen Kenntnisse auf bekannte physikalisch-technische Fragestellungen aus der Ingenieurspraxis anzuwenden bzw. auf verwandte Aufgabenfelder zu übertragen.

Im Physik-Labor verstehen die Studierenden die physikalischen Grundlagen der Methoden, die bei experimentellen Untersuchungen typischerweise eingesetzt werden. Dabei wird insbesondere das Verständnis des Zusammenspiels der verwendeten Komponenten und ihre Beeinflussbarkeit durch den Experimentator deutlich.
Die Studierenden sind in der Lage, durch gewissenhaftes Beobachten und Messen quantitative Zusammenhänge physikalischer Gesetzmäßigkeiten im Experiment zu ermitteln und eine kritische Bewertung der Ergebnisse vorzunehmen. Die Studierenden lernen dabei, sich mit den zu benutzenden Messeinrichtungen und ihrer Funktion vertraut zu machen und sind in der Lage, selbständig Messungen durchzuführen.
Da die Experimente in kleinen, betreuten Gruppen durchgeführt werden, werden insbesondere die Schlüsselkompetenzen Kommunikationsfähigkeit und Teamfähigkeit eingeübt.
Die Studierenden erhalten zum Abschluss der Lehrveranstaltung die Möglichkeit, im Rahmen des Kolloquiums einen selbst durchgeführten Versuch aufzubereiten und vor den Kommilitonen zu präsentieren.

Dauer 2 Semester
SWS 8.0
Aufwand
  • Lehrveranstaltung:120 h
  • Selbststudium/
    Gruppenarbeit:150 h

  • Workload:270 h
Leistungspunkte und Noten

Physik I: Klausurarbeit, 90 Min.

Physik II: Klausurarbeit, 60 Min.

Physik-Labor: Laborarbeit

ECTS 9.0
Modulverantw.

Prof. Dr.-Ing. Christian Ziegler

Max. Teilnehmer 0
Empf. Semester 1-2
Häufigkeit jedes Semester
Verwendbarkeit

aBM, BM, BT, ES, MA, UV - Grundstudium

Veranstaltungen Physik II
Art Vorlesung
Nr. M+V805
SWS 2.0
Lerninhalt
  • Schwingungen und Wellen
    Mechanische Schwingungen: freie, gedämpfte und erzwungene Schwingungen, Resonanz
    Eigenschaften mechanischer und akustischer Wellen
  • Optik
    Geometrische Optik: Reflexion und Brechung, optische Instrumente
    Wellenoptik: Interferenz und Beugung
  • Ausgewählte Anwendungsbeispiele
Literatur
  • Physik, D. C. Giancoli (Pearson Education, 2009)
  • Physik für Wissenschaftler und Ingenieure, P. A. Tipler (Springer Spektrum Verlag, 2015)
  • Physik für Ingenieure, Hering, Martin, Stohrer (Springer-Verlag Berlin Heidelberg, 2012)
  • Physik, U. Harten (Springer Vieweg, 2017)
  • Taschenbuch der Physik, H. Kuchling (Carl-Hanser-Verlag, 2014)
  • Taschenbuch der Physik, Stöcker (Verlag Harri Deutsch, 2014)
Physik I
Art Vorlesung
Nr. M+V804
SWS 4.0
Lerninhalt
  • Physikalische Größen und mathematische Grundlagen
    Definitionen und Maßeinheiten; eine Auswahl mathematischer Verfahren in der Physik
  • Mechanik
    Kinematik und Dynamik: Grundgesetze der klassischen Mechanik, Mechanik des Massenpunktes, Gravitationskraft und Coulombkraft;
    Arbeit, Energie und Leistung;
    elastischer und inelastischer Stoß;
    Mechanik des starren Körpers, Translation und Rotation;
    Mechanik deformierbarer Körper
  • Wärme
    Wärmeausdehnung;
    1. Hauptsatz der Thermodynamik;
    ideales Gas
  • Ausgewählte Anwendungsbeispiele
Literatur
  • Physik, D. C. Giancoli (Pearson Education, 2009)
  • Physik für Wissenschaftler und Ingenieure, P. A. Tipler (Springer Spektrum Verlag, 2015)
  • Physik für Ingenieure, Hering, Martin, Stohrer (Springer-Verlag Berlin Heidelberg, 2012)
  • Physik, U. Harten (Springer Vieweg, 2017)
  • Taschenbuch der Physik, H. Kuchling (Carl-Hanser-Verlag, 2014)
  • Taschenbuch der Physik, Stöcker (Verlag Harri Deutsch, 2014)
Physiklabor
Art Labor
Nr. M+V846
SWS 2.0
Lerninhalt

Im Praktikum wird in einfachen Versuchen die Kunst des Messens und Beobachtens, die Gewinnung quantitativer Zusammenhänge, die Erarbeitung physikalischer Sachverhalte und besonders die kritische Wertung der gewonnenen Ergebnisse geübt und sich mit den benutzten Apparaten und ihrer Funktion vertraut gemacht.
Die Experimente werden in kleinen betreuten Gruppen bearbeitet. Am Ende eines jeden Versuchs steht die Anfertigung eines Laborberichts. Dieser beinhaltet neben den theoretischen Grundlagen des Versuchs eine geeignete Darstellung der wichtigsten Ergebnisse inklusive einer Abschätzung der Fehler im Rahmen einer Fehlerrechnung.
Für jeden Versuch ist ein Laborbericht zu erstellen.

Literatur
  • Physikalisches Praktikum, D. Geschke (Teubner, 2001)
  • Praktikum der Physik, W. Walcher (Teubner, 2000)
  • Physik, D. C. Giancoli (Pearson Education, 2009)
  • Physik für Wissenschaftler und Ingenieure, P. A. Tipler (Springer Spektrum Verlag, 2015)
  • Taschenbuch der Physik, H. Kuchling (Carl-Hanser-Verlag, 2014)

Technologie I

Empf. Vorkenntnisse

keine

Lehrform Vorlesung
Lernziele

Die Studierenden

  • gewinnen einen Überblick über verschiedene Fertigungsverfahren nach DIN 8580 (Urformen, Umformen, Trennen, Fügen, Beschichten), deren Anwendungsmöglichkeiten sowie Einblicke in moderne Verfahren der additiven Fertigung.
  • sind in der Lage, die spezifischen Eigenschaften polymerer Werkstoffe anhand der Herstellung mit speziellen Additiven zu erklären sowie die Eigenschaften fertigungs- und anwendungsbezogen zu optimieren. besitzen aufgrund der in den Werkstoffprüflaboren (Metalle, Kunststoffe) erworbenen Materialkenntnisse die Kompetenz, derartige Werkstoffe in der Fertigung und Anwendung optimal einzusetzen und mechanisch zu bearbeiten.
  • lernen Begriffe der Betriebswirtschaftslehre, Wechselwirkungen in Produktlebenszyklen sowie Wirtschaftlichkeitsbetrachtungen in Produktionsabläufen an betrieblichen Beispielen kennen. Hierzu gehören sowohl Kosten- und Wirtschaftlichkeitsberechnung als auch verschiedene Arten statischer und dynamischer Investitionsrechnungen.
Dauer 2 Semester
SWS 7.0
Aufwand
  • Lehrveranstaltung:105 h
  • Selbststudium/
    Gruppenarbeit:105 h

  • Workload:210 h
Leistungspunkte und Noten

Industriebetriebslehre: Klausurarbeit, 60 Min.

Werkstofftechnik II und Grundlagen Fertigungsverfahren: Klausurarbeit, 120 Min. und Laborarbeit

ECTS 7.0
Modulverantw.

Prof. Dr.-Ing. Günther Waibel

Max. Teilnehmer 0
Empf. Semester 1 und 2
Häufigkeit jedes Semester
Verwendbarkeit

MA - Grundstudium

Veranstaltungen Grundlagen Fertigungverfahren
Art Vorlesung
Nr. M+V820
SWS 3.0
Lerninhalt

Grundlagen der Fertigungsverfahren

1. Einteilung der Fertigungsverfahren

  • Urformen
  • Umformen
  • Trennen
  • Fügen
  • Beschichten
  • Stoffeigenschaften ändern
    • Form- und Gießverfahren, Beispiel
    • Gusswerkstoffe
    • Kokillengießen
    • Feingießen
    • Kunststoffspritzguss
    • Additive Fertigung (3D-Druck)
    • Einteilung der Umformverfahren, Beispiele
    • Biegeumformen
    • Tiefziehen
    • Fließpressen
    • Walzen
    • Andere Verfahren
    • Einteilung der Verfahren, Beispiele
    • Grundlagen der Zerspanung
    • Drehen
    • Bohren
    • Fräsen
    • Andere Verfahren
    • Fügeverfahren, Beispiele
    • Kraft-, Form-, Stoffschlüssiges Fügen
    • Pressverbindungen
    • Schnappverbindungen
    • Kleben, Löten, Schweißen
    • Montagetechniken
    • Handhaben & Montieren
    • Verfahren und Beispiele
    • Lackieren
    • Galvanisieren (Verchromen/Verzinken)
    • Drucken und Beschriften
    • Elektrostatisches Beschichten
    • Auftragsschweißen
    • Vakuumbedampfen
  • 2. Urformen

    3. Umformen und Betriebsmittel

    4. Trennen

    5. Fügen

    6. Beschichten

Literatur
  • Bargel/Schulze: Werkstoffkunde, Hermann Schroedel Verlag, Hannover
  • Autorenkollektiv: Fachkunde für Metallberufe:Verlag Europa Lehrmittel,Wuppertal
  • Fritz/Schulze: Fertigungstechnik, VDI Verlag, Düsseldorf 1998
  • König, W.: Fertigungsverfahren Band 4, VDI Verlag, Düsseldorf 1998
  • Schmöckel, L: Vorlesungsskript Umformtechnik TH Darmstadt

Weiterführende Literatur:

  • Spur/Bührig-Polaczek/Michaeli: Edition Handbuch der Fertigungstechnik, Carl Hanser Fachbuchverlag, 2013
Werkstofftechnik II
Art Vorlesung
Nr. M+V814
SWS 2.0
Lerninhalt

Kunststoffe
- Einteilung
- Makromolekularer Aufbau
- Herstellung
- Additive
- Werkstoffeigenschaften
- Prüfverfahren

Keramiken
- Einteilung
- Herstellung
- Werkstoffeigenschaften
- Prüfverfahren

Literatur
  • W. Weißbach: Werkstoffkunde - Strukturen, Eigenschaften, Prüfung, Vieweg + Teubner Wiesbaden, 2010
  • M.F. Ashby, D.R.H. Jones: Werkstoffe 2: Metalle, Keramiken und Gläser, Kunststoffe und Verbundwerkstoffe, Elsevier München, 2006
  • H.-J. Bargel, G. Schulze: Werkstoffkunde, Springer-Verlag Berlin Heidelberg, 2005
  • G. Erhard: Konstruieren mit Kunststoffen, Carl Hanser Verlag München, 2008
  • M. Bonnet: Kunststoffe in der Ingenieuranwendung, Vieweg+Teubner Wiesbaden, 2009
  • Brevier Technische Keramik, Verband der keramischen Industrie e.V. (Fahner Verlag, 2003)
Industriebetriebslehre I
Art Vorlesung
Nr. M+V821
SWS 2.0
Lerninhalt
  • Einführung und Grundlagen
    - das ökonomische Prinzip
    - der Wirtschaftsstandort Deutschland, Wettbewerbsstaaten, Wettbewerbskriterien
    - Betrieb und Unternehmen
  • Die Organisation von Unternehmen
    - Aufbau und Ablauforganisation
    - Organisationsformen in Unternehmen
  • Der Produktlebenszyklus
    - Phasen des Produktlebenszyklus
    - Gruppenarbeit und Beispiele
  • Kennzahlen des betrieblichen Wirtschaftens
    - Produktivität
    - Liquidität
    - Rentabilität
  • Einführung in die Kostenrechnung
    - Prinzipien der Kostenrechnung
    - Kostenartenrechnung
    - Kalkulationsverfahren
  • Statische und dynamische Investitionsrechnung
    - Kostenvergleichsrechnung
    - Gewinnvergleichsrechnung
    - Rentabilitätsvergleichsrechnung
    - Amortisationsvergleichsrechnung
    - Kapitalwertmethode
  • Ausgewählte Beispiele
Literatur
  • Betriebswirtschaft für Ingenieure, Härdler, Jürgen (Fachbuchverlag Leipzig, 2010)
  • Kostenrechnung I, Haberstock. (Erich Schmidt Verlag, 2008)


← Back Save as Docx