ADVANCED DATA ANALYTICS FOR FAULT DETECTION AND OPTIMIZED OPERATION IN DISTRICT ENERGY CONCEPTS

On the use of semantics, machine learning and optimization

Nicolas Réhault

Fraunhofer-Institut für Solare Energiesysteme ISE

ACA-MODES Workshop

Offenburg, 31. January 2020

Current situation Transformation of energy supply systems for districts

- Raising complexity of energy supply infrastructures
- Limited manpower for the operation phase of buildings and districts
- Need for new concepts for energy optimized districts enabling:
 - the integration of a high amount of local renewable energy
 - interactions between people, buildings and heating and power networks

We need digital methods to increase the degree of automation in the operational management of buildings

Digital methods for energy optimized buildings and districts Enabling smartness

Optimization

Digital methods for energy optimized buildings and districts Enabling smartness

Optimization

Semantic interoperability Foundation to take benefit of data

- Data amount and availability in buildings are steadily increasing
- Ideally, this data should be structured on the basis of standardized data models:
 - to interoperate heterogeneous applications
 - to process data automatically
- In reality:
 - It often looks like that:

Semantic interoperability Solution pathways

- Unified semantics as base to cope with existing systems and to automate analysis
- Enable the usage of BIM and Ontologies
- Labeling of systems
 - 1. Building
 - 2. Zone
 - 3. System
 - 4. Subsystem_1
 - 5. Subsystem_2
 - 6. Medium
 - 7. Position
 - 8. Kind
 - 9. Datapoint

Fraunhofer

Available data points: BUI_WERK_WTH_ _ _ OA_ _MEA_T BUI_WERK_WC.H_ _ _HW_SUP.SEC_MEA_T BUI_WERK_WC.H_ _ _HW_RET.SEC_MEA_T BUI_WERK_WC.H.NO_PU _ _HW_SUP.SEC_SIG_CTRLSIG

Semantic interoperability Solution pathways

Automated identification of sensor types through meta data inference

Combined Machine learning architecture

Semantic interoperability Solution pathways

- Semantics as base for automatization
- Automatically trigger simple checking rules

$$T_{SUP,PuON} = T_{SUP} (PU_{SIG} > 0)$$

$$T_{SUP,PuOFF} = T_{SUP} (PU_{SIG} = 0)$$

if $T_{SUP,PuOFF} > T_{SUP,PuON}$:

fault = True

Available data points: BUI_WERK_WTH_ _ _OA_ _MEA_T BUI_WERK_WC.H_ _ HW_SUP.SEC_MEA_T BUI_WERK_WC.H_ _ HW_RET.SEC_MEA_T BUI_WERK_WC.H.NO_PU _ _HW_SUP.SEC_SIG_CTRLSIG

Digital methods for energy optimized buildings and districts

Enabling smartness

Fault Detection and Diagnostics Principle

Optimization

Fault Detection and Diagnostics Methods

Optimization

Fault Detection and Diagnostics Clustering

- Density-based clustering (DBSCAN)
- Training on error-free data -> data are assigned to clusters
- Outliers correspond to incorrect data

Optimization

Fault Detection and Diagnostics Qualitative models

- Approximate description of system behavior
- Use of qualitative values e.g. "a lot" or "little"
- The qualitative behavior of the process is represented by a quantized system

Fault Detection and Diagnostics Qualitative models

Optimization Diagnostics Semantics

Example: fault detection in supply temperature of thermal activated slabs

Fault Detection and Diagnostics Method combination and feedback system

- Use of two complementary methods (e.g. clustering and decision trees)
- Continuous user feedback is used to adapt the methods

💹 Fraunhofer

Fault Detection and Diagnostics Method combination and feedback system

Benefits:

- Initially only error-free training data necessary
- Expert knowledge can be integrated
- Error detection improves during use
 - Required feedback decreases

Fault Detection and Diagnostics Example Rathaus im Stühlinger - Freiburg

Very precise detection of increased supply air temperatures in an AHU by learning from user feedback

18

Digital methods for energy optimized buildings and districts Enabling smartness

Optimization

Optimization Diagnostics

Semantics

Optimization

Digital methods for energy optimized buildings and districts

Conclusion and outlook

- Digital methods are key enabler for energy and cost efficiency in complex disctrict and building energy systems
- Unified data models and semantics are essential to inter-operate complex systems
- Analytics methods and connectivity technologies are mature for implementation and test in field
- New business and incentives models need to be developed to enable scalable solutions with high replication potential

Vielen Dank für Ihre Aufmerksamkeit!

Fraunhofer-Institut für Solare Energiesysteme ISE

Nicolas Réhault - <u>nicolas.rehault@ise.fraunhofer.de</u> www.ise.fraunhofer.de

