

# Advantages of dynamic system simulation for planning and operation of decentralized energy systems

Adrian Bürger<sup>1,2</sup>, Angelika Altmann-Dieses<sup>1</sup>, Moritz Diehl<sup>2</sup>

 Institute for Refrigeration, Air-Conditioning and Environmental Engineering (IKKU), Karlsruhe University of Applied Sciences, Germany
Systems Control and Optimization Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany



#### Overview



- Introduction and motivation
  - Properties of (renewable) energy systems
  - Advantages of dynamic system simulation
- Software and methods
  - Modeling concepts
  - Simulation software
- Application case study
  - Based on solar thermal test plant at Karlsruhe UAS
  - Simulation studies for different component dimensions



## • Properties of (renewable) energy systems

- Efficiency and applicability of components varies for different operation conditions
- Strong dependencies on immutable but forecastable external influences, such as weather conditions and electricity prices
- Typically include storage facilities such as (stratified) water storages, batteries, and also thermal masses of buildings which can be utilized for energy storage and load shifting

## • Advantages of dynamic system simulation

- Display component interaction under different operation conditions
- Depiction of inter-temporal interaction and effects between storages and components



## Modeling concepts

### Black box modeling

- Purely date-driven models
- Data collected during normal operation or specific tests

#### - White box modeling

- Models purely derived from physical laws
- Requires detailed knowledge of underlying process

#### Grey box modeling

- Basic structure formed using physical correlations
- Model parameters are estimated from system data
- Example: Heat storage model describe by mass an energy balances, whose heat loss coefficients are determined from measurement data



#### • Simulation software

- Scientific computing frameworks such as Matlab, SciPy
- Modelica-based simulation software
  - Both commercial (e.g. **Dymola**) and open-source (e.g. **OpenModelica**) simulation environments
  - Existing toolboxes for energy system simulations, e.g.:

**TIL** (commercial model library for thermodynamic systems), **Modelica Buildings Library** (open-source model library for district energy and control systems), **IDEAS** (open-source model library for district energy systems)



• The solar thermal test plant at Karlsruhe UAS





Plate collectors (roof)

Vacuum tube collectors (roof)

Control cabinet, cold storage, ACM, hot storage, pumps (cellar)



Recooling unit (roof)



Fan coils (atrium)



#### • Simplified version of the plant





- Solar cooling for server cooling
  - System applied for covering of constant cooling load  $\dot{O}_{c}=10\,\text{kW}$
  - Auxiliary device provides additional cooling power  $\dot{O}_{aux}$
  - Aim is to optimize system configuration to reduce the use of auxiliary cooling power and energy

## Simulation setup

- Simulation of three successive, exemplary summer days
- Grey-box dynamic models, self-developed in Modelica
- Simulations are carried out for:
  - a base scenario,
  - a scenario with increase solar power and HTS
  - a scenario with increase solar power, HTS and LTS

#### Application case study IV





Bürger et al.

#### Application case study V





Bürger et al.

#### Application case study VI





Bürger et al.



- Results of the simulation study
  - An increase of the solar collector surface by 20 % and an increase of the HTS volume to 4 m<sup>3</sup> reduces the auxiliary energy consumption by  $\sim42\,\%$
  - An additional increase of the LTS volume to 4 m<sup>3</sup> allows to further reduce auxiliary energy consumption by an additional  $\sim$  4 % and the peak auxiliary cooling power demand by  $\sim$  29 %
  - Dynamic system simulation allowed to identify possibilities for reduction of both total auxiliary energy and peak power utilization



## Thank you for your attention!

## I'm looking forward to your questions

#### This research received funding from INTERREG V Upper Rhine, project ACA-MODES.

