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Overview

• Model Predictive Control
– General concept, advantages, and challenges
– Advantages for energy system operation

• Problem formulations and classes
– Formulation and solution of optimal control problems
– Modeling and complexity

• Software and methods
– Software frameworks and numerical solvers

• Illustrative example of MPC performance
– One-year simulation study for a building energy system
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Model predictive control I

• General concept of Model Predictive Control (MPC)
– MPC describes a set of control methods that make explicit use of

models for control of a system
– MPC computes a sequence of control signals that are optimal for

control of a system for a defined objective and time horizon
– MPC is able to consider system dynamics, possible constraints for

states and controls, and the current state of the system

– Various fields of applications, from mechanical system to process
control, and (of course) for energy system operation
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Model predictive control II

• Advantages of MPC
– Suitable for systems with multiple inputs and outputs
– Intrinsic compensation of dead times
– Explicit consideration of constraints of states and controls
– Can consider future system behavior, as well as current and future

references and disturbances in current control decisions

• Challenges of MPC
– Application of MPC requires prior formulation of an Optimal

Control Problem (OCP) that describes system dynamics, relevant
constraints and bounds sufficiently

– MPC (typically) requires solution of this OCP within real-time
suitable time scales for the considered system
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Model predictive control III

• Advantages of MPC for energy system operation
– Forecasts for availability and demand of thermal and electrical

energy can be directly included in predictive control decisions
– Thermal and electric storages can be used systematically for

bridging times of low energy availability and load shifting
– Situational and individual control decisions for utilization of

components and machinery can be made

– Availability of computation time for energy systems (at least for
thermal systems) is rather high
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Problem formulation and classes I

• Formulation of Optimal Control Problems (OCPs)

minimize
x(·),u(·)

tf∫
t0

L
(
x(t), u(t)

)
dt +M

(
x(tf)

)
(1a)

subject to for t ∈ [t0, tf ] :

ẋ(t) = f
(
x(t), u(t), c(t)

)
(1b)

0 ≤ h
(
x(t), u(t), c(t)

)
(1c)

0 ≤ r
(
x(tf)

)
(1d)

~x(t0) = ~x0, (1e)
~x(t) ∈ X , ~u(t) ∈ U . (1f)

→ OCP needs to be solved within real-time suitable time scales
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Problem formulation and classes II

• Solution of optimal control problems
– For numerical solution, OCP needs to be discretized, for which

different families of methods exist:

• Hamilton-Jacobi-Bellmann equations
• indirect methods (first optimize, then discretize)
• direct methods (first discretize, then optimize)

– For larger system of practical relevance, direct methods, especially
direct multiple shooting and direct collocation, are favorable

– Depending on the characteristics of the OCP, this yields
optimization problems of different complexity
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Problem formulation and classes III

• Linear vs. nonlinear problem formulations
– Linear modeling as in, e. g.,

ẋ(t) = Ax(t) + Bu(t) (2)

allows for linear optimization problems, which yields the possibility
for global optimal and typically faster solutions of the problem

– Nonlinear modeling as in, e. g.,

ẋ(t) = f
(
x(t), u(t)

)
(3)

can yield improved system descriptions, however, possibly at the
cost of global optimality and increased solution times of nonlinear
optimization problems
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Problem formulation and classes IV

• Continuous vs. discrete states and controls
– OCPs containing purely continuous states and controls as in, e. g.,

x(t) ∈ Rnx , u(t) ∈ Rnu , (4)

results in continuous optimization problems that can be solved
rather efficiently

– OCPs where some or all states and controls only take discrete
values as in, e. g.,

u(t) =

(
uc(t)
ud(t)

)
, u(t) ∈ Rnuc , u(t) ∈ Znud (5)

result in mixed-integer optimization problems that are typically
harder to solve
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Software and methods

• Software frameworks and numerical solvers
– A wide variety of software frameworks and numerical solvers exist,

whose suitability and applicability depends various factors, such as:

• problem class (linear, nonlinear, mixed-integer, ...)
• structure of the optimization problem (dense, sparse, ...)
• available computation time (microseconds, seconds, minutes, ...)
• computation platform (PLC, microcrontroller, PC, ...)

– One framework we often use: CasADi

• Open-source dynamic optimization framework for discretization of
OCPs and implementation of the resulting optimization problems

• Interfaces to several simulation and optimization routines
• Automatic generation of derivatives using Algorithmic

Differentiation (AD)
• Many useful features, such as C-Code generation and automatic

setup of Spline interpolations
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MPC performance example I

• One-year-simulation of a building energy system1

HM

HM HMHM

HM

1Bürger A, Bohlayer M, Hoffmann S, Altmann-Dieses A, Braun M, Diehl M: A whole-year simulation
study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use
components. Applied Energy 258 (2020), 114064.
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MPC performance example II

• Setup and results of the study2

– Economic mixed-integer nonlinear MPC with 24 h prediction
horizon using direct collocation in CasADi, IPOPT, and pycombina

– Performance comparison to an elaborate conventional controller

– MPC operation reduced yearly energy consumption of heat pump
and heating rods by more than 18%

– Counter-intuitive control decisions identified new use cases for
system components

→ MPC well suited for control of the system
→ Simulation study allowed to identify previously unknown, beneficial

operation modes of the system

2Bürger A, Bohlayer M, Hoffmann S, Altmann-Dieses A, Braun M, Diehl M: A whole-year simulation
study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use
components. Applied Energy 258 (2020), 114064.
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Thank you

Thank you for your attention!

I’m looking forward to your questions

This research received funding from
INTERREG V Upper Rhine, project ACA-MODES.
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