

Anlagenüberwachung Die Zukunft ist dezentral und digital

Mondas GmbH in Kürze

- Ausgründung des Fraunhofer-Instituts für Solare Energiesysteme, Hochschule Biberach und PSE AG
- Gegründet: Januar 2018
- 13 Mitarbeiter
- Kerngeschäft: Entwicklung und Vertrieb einer innovativen IoT-Webplattform
- Basiert auf langjährigen Vorarbeiten am Fraunhofer ISE
- Team aus erfahrenen Planungsingenieuren und Informatikern

Geschäftsführer

Christian Reetz (Dipl.-Informatiker)

Christian Neumann (Dipl.-Ingenieur)

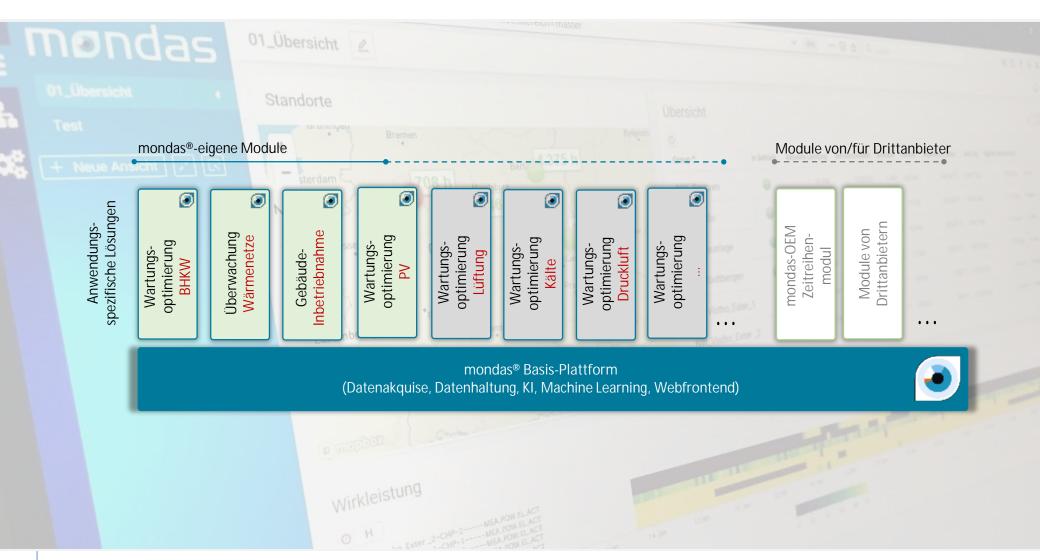
mondas® IoT-Webplattform Märkte und Anwendungsbereiche

Anlagen

Gebäude / Infrastruktur

Produktion

Branchen/Anwendungen


- Energieanlagen
- Techn. Gebäudeausrüstung
- Produktionsmaschinen
- **-**

- Liegenschaftsbestände
- Quartiere
- Wärmenetze
- ...

- Metall- / Kunststoffverarb.
- Chemie
- Pharma
- ...

mondas® IoT-Webplattform Modulare Struktur

Mondas Referenzen

Technisches Monitoring »Liegenschaften BLB.NRW«

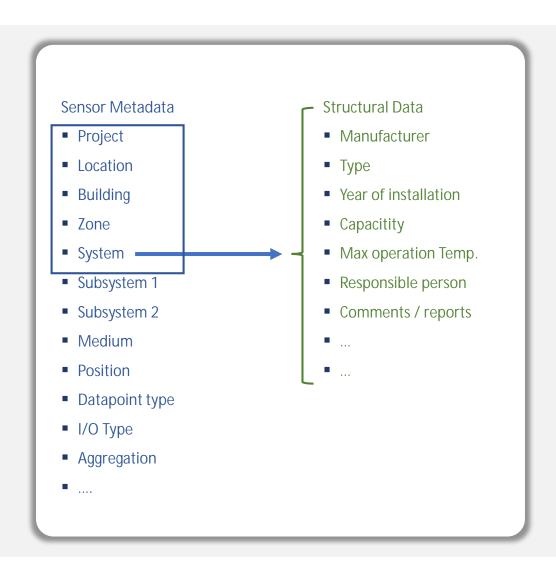
Last-Management »Industrieabwärme Cerdia«

Wartungsoptimierung »BHKW-Flotte enerquinn«

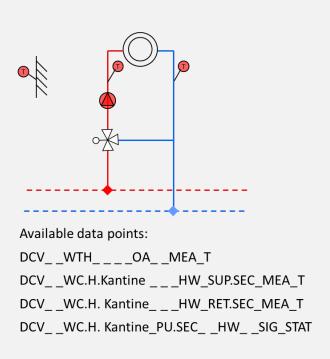
Technisches Monitoring Typische Problemstellungen

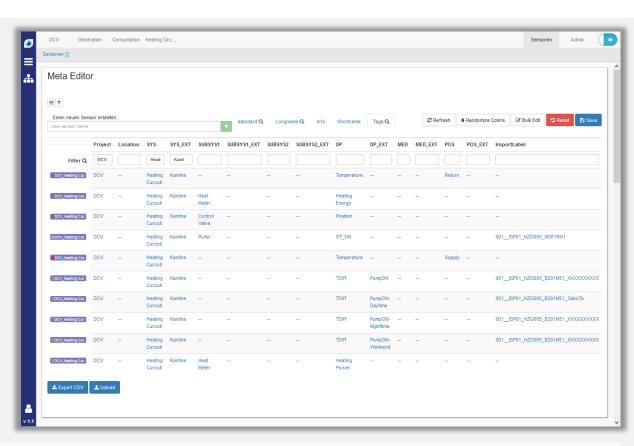
Voraussetzungen für große, dezentrale Anlagenbestände Anlagenüberwachung

Was wird für die effiziente Überwachung eines großen Anlagenbestands benötigt?

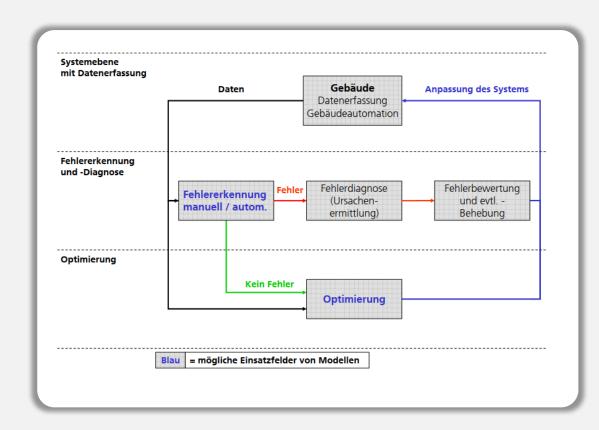

- Standardisierte semantische Datenmodelle zur Beschreibung von Systemen
- Automatisierte Analysen
 Erkennung typischer Fehlbetriebe und/oder
 Methoden zur vorausschauenden Wartung
- Schnittstellen zur Anbindung an andere Systeme / Prozesse
- Konfigurierbare Plattform die Automatisierung effizient unterstützt

Metadatensystem **Standardisiertes semantisches Datenmodell**



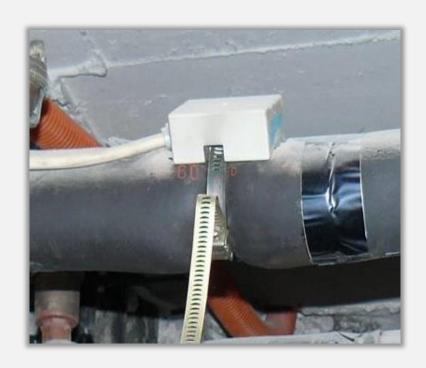

- Datenpunkte werden über einheitliches Metadatensystem (tags, compounds) kategorisiert
- Kategorien müssen flexibel und erweiterbar sein
- Sensordaten / Strukturdaten über Metadaten verknüpfen
- Somit "Vorlagen" für ähnliche Systeme möglich
- Mittel-/langfristig:
 Metadaten über BIM generieren
- Die Software "kennt" somit die Datenpunkte und deren Verbindung zu den Systemen

Metadatensystem Standardisiertes semantisches Datenmodell – Beispiel Heizkreis

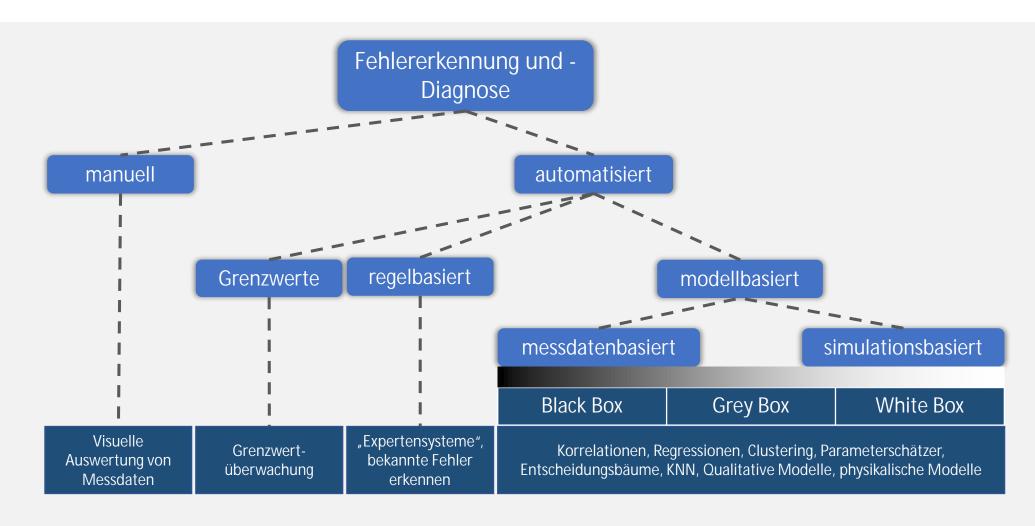

- Über Filterung von Metadaten können Auswertungen (Visu, Fehlererkennung, Alarme, etc.) für Flotten ähnlicher Systeme erstellt bzw. generalisiert werden.
- Erstellung oder spätere Anpassungen nur ein Mal pro System → effiziente Behandlung vieler Systeme

Fragestellungen Digitale Lösungen zur Optimierung der Anlagentechnik

Was heißt Optimierung?

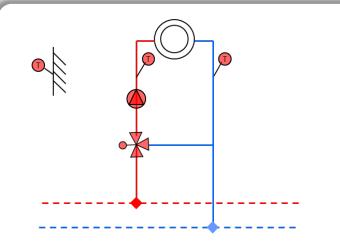

- Was ist das Ziel?
 - → Fehlererkennung?
 - → Fehlerdiagnose?
 - → Optimierung?
 - → Verbesserung Wartungsmanagement

Anlagenmonitoring Beispiele typischer Fehler in der Versorgungstechnik...



- Betriebszeiten zu lang / nicht an Bedarf angepasst (Kein/ungenügender Absenkbetrieb)
- Betriebszeiten nicht abgestimmt (z.B. Ventilatoren, Umwälzpumpe Heizregister)
- Heiz-/Kühlkurven falsch
- Volumenströme zu hoch (Temperaturspreizung zu gering)
- Gleichzeitiges Heizen und Kühlen
- Ineffizienter Frostschutzbetrieb
- Fehler in der Verschaltung / Hydraulik
- Fehler in Messtechnik
 (falsche Wandlerfaktoren, falsch aufgelegte
 Sensoren, nicht kalibrierte Sensoren,..)
- Falsch / überdimensionierte Erzeugeranlagen (Takten, Teillastbetrieb)

Automatisierter Fehlererkennung Verfahren



Automatisierter Fehlererkennung Verfahren – Beispiel: Regelbasierte Fehlererkennung

Regelbasierte Analysen

- Prinzipiell: "wenn..., dann..."
- Regeln für häufig vorkommende (Teil-)Systeme
- Keine Trainingsdaten notwendig
- System- und fehlerspezifisch
 (bekannte Fehler werden mit hoher Wahrscheinlichkeit erkannt, unbekannte nicht)
- Vorprozessierung
 - → Prüfen, welche DP vorhanden sind (welche Regeln können angewendet werden?)
 - → Ggf. Zeitraster synchronisieren und /oder zeitlich verdichten
 - → Messdaten über Auswertezeitraum vorhanden? (ggf. Lücken interpolieren)
 - → Ggf. Betriebsmodi detektieren / Daten aufteilen (z.B. Pumpe an/aus, Ventil zu/offen, Heiz-/Kühlbetrieb, ...)
- Auslösung Alarm über Prio / Häufigkeit
- → Automatisierung der Suche nach häufigen / typischen Fehlbetrieben

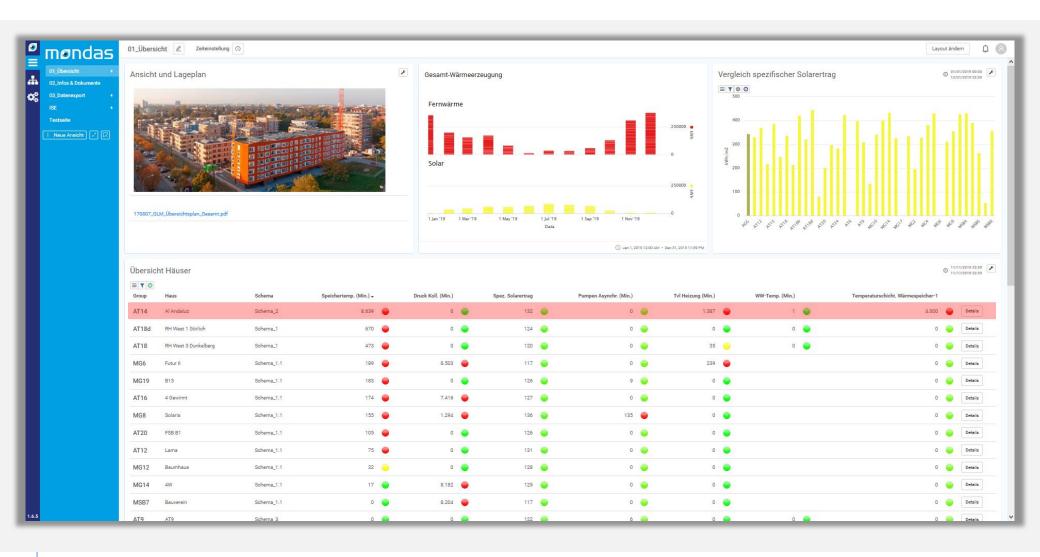
Beispiele für regelbasierte FE:

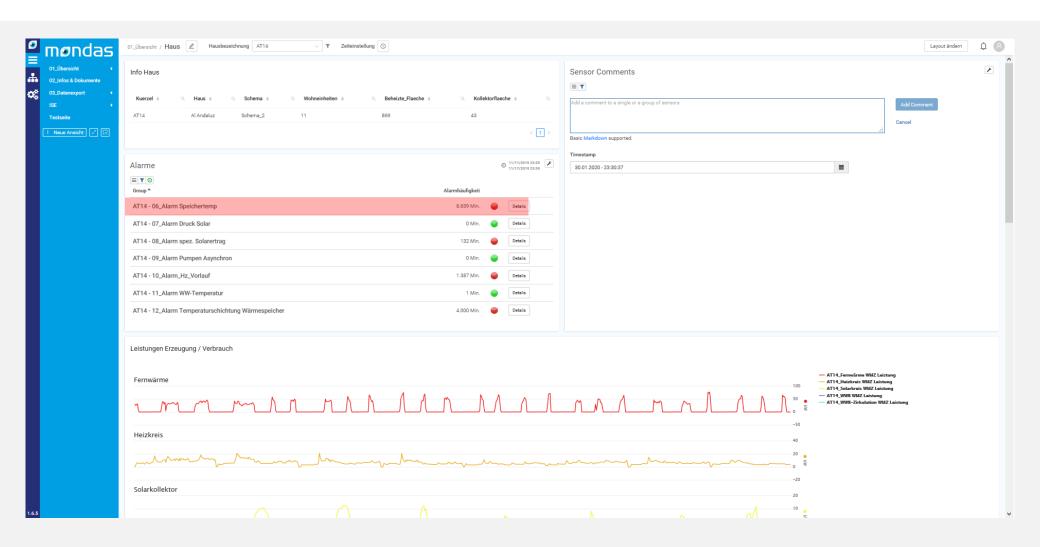
- Heizkurve korrekt?
- Spreizung korrekt?
- Ventil undicht / blockiert?
- Betriebszeiten plausibel?
- Pumpen (prim./sek.) asynchron?
- ..

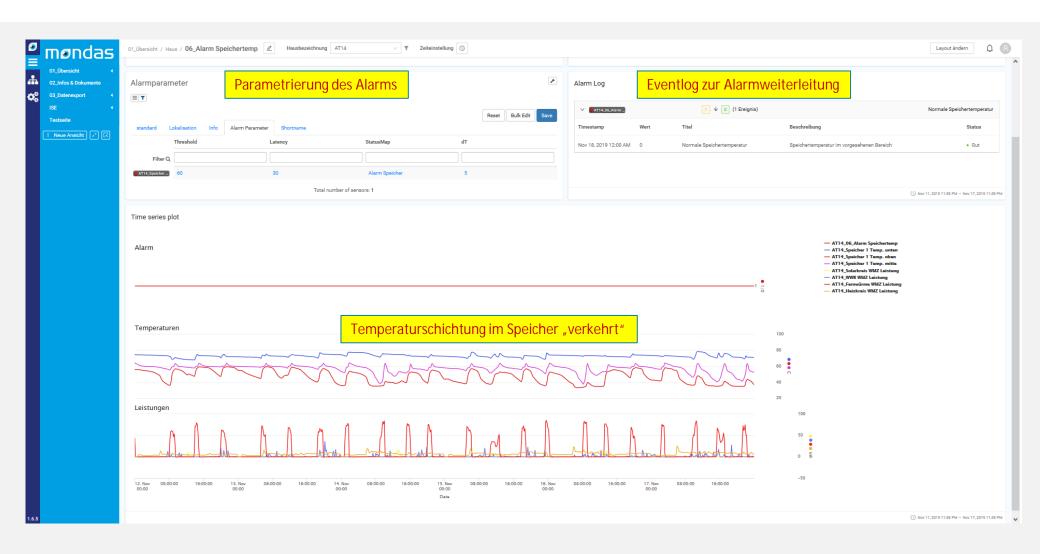
Intelligente Anlagenüberwachung mit mondas® Beispiel - Nahwärme (badenova WÄRMEPLUS)

Intelligente Anlagenüberwachung mit mondas® Beispiel - Nahwärme (badenova WÄRMEPLUS)

- Erfassung von Messdaten, Ertrags- und Bedarfswerten bei allen 39 Gebäuden / Solaranlagen
- Kennwert-Ermittlung
- Inbetriebnahme-Monitoring der dezentralen Solarsysteme
- Automatisierte Fehlererkennung
- Regelung des Smart Renewable Heat Grid




Intelligente Anlagenüberwachung mit mondas® Produktbeispiel - Nahwärme (badenova WÄRMEPLUS)


Intelligente Anlagenüberwachung mit mondas® Produktbeispiel - Nahwärme (badenova WÄRMEPLUS)

Intelligente Anlagenüberwachung mit mondas® Produktbeispiel - Nahwärme (badenova WÄRMEPLUS)

Fragestellungen Digitale Lösungen zur Optimierung der Anlagentechnik

Einbindung in andere System / Prozesse

- Datenfluss
 - Quelle GA, Einzelregler, zusätzliche Sensorik / Logger
 - → Oft: gewachsene Strukturen; Vielzahl Systeme / Protokolle
- Informationsfluss
 - → Manuell / BIM / ?
- Geschäftsprozesse
 - → ERP, CAFM, Servicemanagement,...
- Alleskönner oder Teamplayer?
 - → Soll ein System alle Prozesse abdecken oder sich auf die Optimierungsaufgabe beschränken und über Schnittstellen kommunizieren?
- Wer ist der Nutzer / Bediener
 - → Spezialist oder "Anwender "
 - → Intern / extern

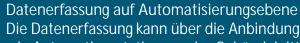
Vom Messwert zum Controlling Datenmanagement mit der mondas® Systemplattform

Bietet einfache und umfassende Möglichkeiten zur Darstellung und Analyse der Daten

Manuelle Dateneingabe

Datenerfassung via Internet

Daten können selbstverständlich auch über Internet bzw. Datei-Import eingelesen werden (z.B. MSCONS, csv, MQTT,...)



Linux Industrie-PC

Gebäudeleittechnik

Die Datenerfassung kann über die Anbindung bestehender Systeme wie Automationsstationen oder Gebäudeleittechnik erfolgen. Bei Bedarf kann mondas® auch kosteneffizient eigene Hardware einsetzen.

Weitere

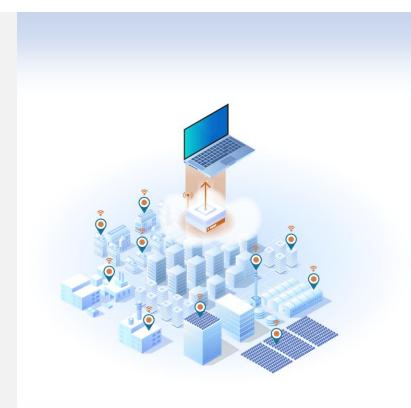
Zur Datenanbindung auf Feldebene stehen zahlreiche gängige Schnittstellen zur Verfügung. Die Ergänzung neuer Schnittstellen ist Dank modularer Struktur sehr einfach möglich.

Web-Plattformen für viele, verteilte Anlagen Welche Eigenschaften sind wichtig?

Flexibel:

- → Abbildung beliebiger Anlagen / Systeme
- → Frei konfigurierbare Oberfläche
- → Erweiterbare Algorithmen-Bibliotheken

Skalierbar:


- → Standardisierte Datenmodelle zur Beschreibung von Systemen
- Durchgängige Nutzung für Visualisierung, Analysen, Datenpunktnavigation, -Filterung

Automatisierung

- → Automatisierte Erstellung von Auswertung
- → Automatisierte Fehlererkennung

Schnell

- → Performantes Datenbankformat
- → Konfigurieren statt Programmieren ("Rapid Design")
- Schnittstellen zu anderen Systemen / Prozessen (Datenakquise, ERP, CAFM, Servicemanagement...)
- Weitere...
 (Visualisierungsmöglichkeiten, Datenimport/-export, Reporting, Messaging, Nutzermanagement, historisierte Strukturdaten, Kommentare,...)

Weitere Informationen

 $Mondas\ GmbH\ ist\ eine\ Ausgr\"{u}ndung\ folgender\ Institutionen:$

mondas® analytic software Schnelle Entwicklung skalierbarer Lösungen

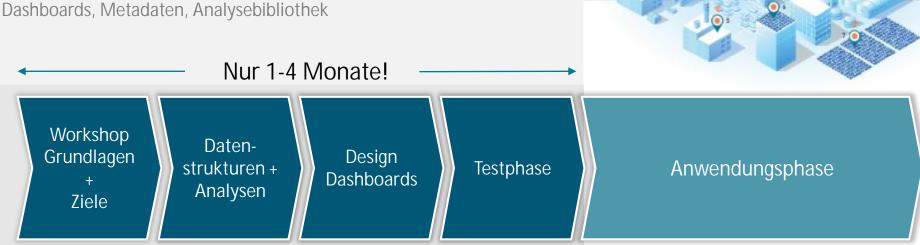
mondas*

MONDAS® INTERFACE

MONDAS® ANALYTIC SOFTWAR

Flexibel

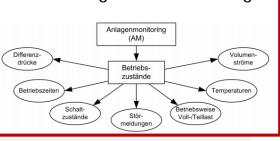
Anlagen jeglichen Typs abbildbar

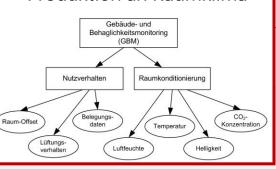

Skalierbar

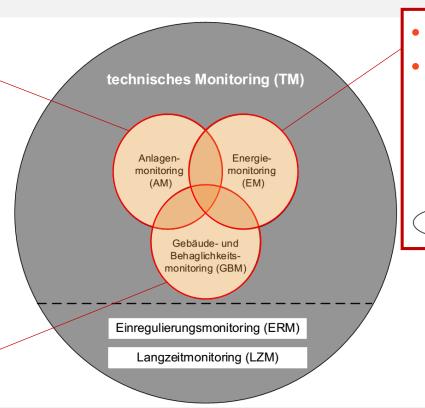
Analysen und Auswertungen nur einmal definieren und automatisiert auf beliebig große Anlagenbestände anwenden

Rapid Design

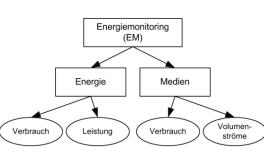
Konfigurieren statt Programmieren


Anpassbar


Technisches Monitoring Abgrenzung verschiedener Arten



- Fehlerdetektion und ggf. Diagnose
- Bedarfsgerechte Wartung



- Behagliche Arbeitsplatzbedingungen
- Sicherstellung Anforderung Produktion an Raumklima


- Energieverbrauch
- Energieeffizienz

Automatisierter Fehlererkennung Verfahren – Beispiel: Regelbasierte Fehlererkennung

Vorlauftemperatur Heizkreis

Weitere Regelsätze für

- Wärmeerzeuger (allg.)
- Kälteerzeuger (allg.)
- BHKWs
- Lüftungsanlagen
- Heiz- / Kühlkreise