Batterie- und Brennstoffzellentechnik
Lithium-ion batteries have become an indispensable part of our everyday lives. In the future, electrolysers and fuel cells for green hydrogen will play an important role. In the Electrical Energy Storage (EES) research group, we are improving the lifetime and performance of batteries and fuel cells. To achieve this goal, we use a wide range of digital methods of modeling, simulation and artificial intelligence. We also carry out experiments in our fully-equipped battery laboratory.
We focus on the following topics in our research:
- Aging mechanisms and lifetime of lithium-ion batteries (e.g., SEI formation, plating, operating limits of fast charging).
- New algorithms for battery state diagnosis (state of charge, SOC, and state of health, SOH).
- Diagnosis of polymer electrolyte membrane fuel cells
- Integration of batteries into power systems (e.g., coupling with photovoltaic modules)
For this we use the following equipment:
- Simulative: In-house multiphysics code DENIS, Matlab with in-house code LIBquiv for equivalent circuit modeling, Simulink, Comsol multiphyiscs.
- Experimental: Battery cyclers (Basytec, Biologic, channels up to 200 A), five temperature test chambers, glovebox, grinding and polishing machine, as well as access to light and scanning electron microscopy and chemical analytics. Our battery lab is described on the lab website.
We carry out these activities as part of publicly-funded projects and industry cooperations, as well as doctorate and student theses. A summary can be downloaded here (in German): Wolfgang G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", Forschung im Fokus, Hochschule Offenburg (2022).
• Elektrochemische Druckimpedanzspektroskopie für die Charakterisierung von Transportvorgängen in elektrochemischen Zellen – EPISTEL (DFG, 2018–2021). In this project, we developed new dynamic methods for the diagnostics of PEM fuel cells.
• Modellbasierte Gesundheitsdiagnostik von Lithium-Ionen-Batterien – LIBlife (State of Baden-Württemberg/EU, 2018–2021). In this project, we used our know-how in aging modeling of lithium-ion batteries to develop a practically applicable diagnostic of the aging state (State of Health). The algorithms developed have been applied in battery systems of industrial cooperation partners.
• Modeling of printed batteries. Doctoral project in the cooperative doctoral program "Modellierung, Entwurf, Realisierung und Automatisierung von gedruckter Elektronik und ihren Materialien – MERAGEM" (State of Baden-Württemberg, 2016–2020).
• Diagnostisches Batterie- und Photovoltaiklabor für Energiefragestellungen der Industrie 4.0 – Enerlab 4.0 (BMBF, 2018 –2020). This extensive investment measure included equipment and facilities for battery and photovoltaic testing.
• Vorhersage und Verlängerung der Lebensdauer von gekoppelten stationären und mobilen Lithium-Ionen-Batterien – STABIL (BMBF, 2016–2019). We investigated the aging mechanisms and lifetimes of lithium-ion batteries at both the individual cell and battery pack levels.
• Lithiumbatterien mit Luftelektrode – LiBaLu (BMBF, 2016–2019). In this project we developed models of lithium-air batteries and used them to optimize the design of a demonstrator cell.
• Lebensdauer von Lithium-Ionen-Batterien für die dezentrale Speicherung regenerativer Energien: Experimentelle Bewertung und modellbasierte Optimierung. Doctoral project in the cooperative doctoral program "Dezentrale Erneuerbare Energiesysteme – DENE" (State of Baden-Württemberg, 2014–2017). We developed and validated models of PV-coupled lithium-ion batteries, with particular focus on the lifetime of battery cells.
• Stabilisierende Netzanbindung eines lokalen Smart Grids – Smart Link (Elektrizitätswerke Mittelbaden, 2014–2017). Using energy system models of a smart microgrid with battery storage, we developed grid-serving operational management strategies.
• Optimierung von Ladeverfahren einer Lithium-Ionen-Batterie unter besonderer Berücksichtigung des Temperaturverhaltens – TempOLadung (BMBF, 2013–2016). In collaboration with our industrial partner Leclanché, we developed optimized charging processes for a lithium-ion battery with special consideration of the temperature behavior. For this purpose, we applied a combined methodology of cross-scale modeling, computer-aided optimization and experiment.
• Mechanismus und Design der Abscheidung von Lithiumoxiden in Lithium-Luft-Batterien – LiO2Mech (BMBF, 2015–2016). This project promoted scientific and technological cooperation with Professor Robert J. Kee of the Colorado School of Mines in the United States, developing models and simulation techniques for lithium-air batteries together.
• Verbesserung von PEMFC-Leistung und -Langlebigkeit durch skalenübergreifende Modellierung und numerische Simulation – PUMA MIND (EU, 2012–2015, www.pumamind.eu). We investigated aging mechanisms of PEM fuel cells for mobile applications. CFD simulations at cell and stack level were coupled with microscopic degradation mechanisms across scales.
• Thermisches Durchgehen von Lithiumbatterien (VolkswagenStiftung, 2011–2015). We developed deterministic models of the thermal runaway of lithium-ion batteries. Heat generation due to side chemical reactions (e.g. decomposition of the solid electrolyte interface layer) was coupled with heat transport and dissipation.
• "Kommunaler Energieverbund Freiburg" – Demonstrationsbetrieb einer Elektrolyseanlage im Industriegebiet Freiburg-Nord zur Verbindung des Strom- und Erdgasnetzes und zur Speicherung erneuerbarer Energien (Land Baden-Württemberg, 2013–2015). In the Modeling subproject, we developed energy system models with Professor Anke Weidlich for optimized operation management of a regenerative microgrid with PV, electrolyser, fuel cell and battery storage.
• Strom aus Luft und Li – Effiziente bifunktionelle Sauerstoffkatalysatoren – LuLi (BMBF, 2011–2014). We modeled electrochemical reactions and transport processes of high-energy lithium-air batteries. The electrode behavior (efficiency, capacity) was determined by complex site-dependent failure reactions of solid products (Li2O2, LiOH).
• Skalenübergreifende Modellierung und In situ-Diagnostik der Festoxid-Brennstoffzelle (Helmholtz-Gemeinschaft, 2010–2015, in cooperation with DLR Stuttgart). We conducted combined theoretical and experimental studies of solid oxide fuel cell (SOFC) performance and lifetime, with a focus on developing lifetime models.
Publications
- Scopus publication and citation statistics Professor Bessler: https://www.scopus.com/authid/detail.uri?authorId=57215636217
- ORCID publication database Professor Bessler: ORCID-ID: 0000-0001-8037-9046
- Online publication www.lifsim.com: LIFSIM - Calculation of fluorescence spectra
- bessler.info: Easily memorizable shortcut to this website
2024
133. W. G. Bessler, “Capacity and resistance diagnosis of batteries with voltage-controlled models,” J. Electrochem. Soc. 171, 080510 (2024), https://doi.org/10.1149/1945-7111/ad6938 . Research data on Zenodo, https://zenodo.org/doi/10.5281/zenodo.10965654 .
132. J. Brucker, R. Gasper, and W. G. Bessler, “A grey-box model with neural ordinary differential equations for the slow voltage dynamics of lithium-ion batteries: Application to single-cell experiments,“ J. Power Sources 614, 234918 (2024), https://doi.org/10.1016/j.jpowsour.2024.234918
131. J. A. Braun, R. Behmann, D. Chabrol, F. Fuchs, and W. G. Bessler, "Single-cell operando SOC and SOH diagnosis in a 24 V lithium iron phosphate battery with a voltage-controlled model," J. Energy Storage 85, 110986 (2024), https://doi.org/10.1016/j.est.2024.110986
2023
130. J. Brucker, W. G. Bessler, and R. Gasper, "A grey-box model with neural ordinary differential equations for the slow voltage dynamics of lithium-ion batteries: Model development and training," J. Electrochem. Soc. 170, 120537 (2023), https://doi.org/10.1149/1945-7111/ad14cd
129. D. Schmider and W. G. Bessler, "Thermo-electro-mechanical modeling and experimental validation of thickness change of a lithium-ion pouch cell with blend positive electrode," Batteries 9, 354 (2023), https://doi.org/10.3390/batteries9070354
128. R. Behmann, J. Phan, A. Root, M. Schmidt, and W. G. Bessler, "Integration of a lithium-ion battery in a micro-photovoltaic system: Passive versus active coupling architectures," Solar Energy 262, 111748 (2023), https://doi.org/10.1016/j.solener.2023.05.025
127. L. Schiffer and W G. Bessler, "Electrochemical pressure impedance spectroscopy for polymer electrolyte membrane fuel cells: Signal interpretation," J. Electrochem. Soc. 170, 054514 (2023), https://doi.org/10.1149/1945-7111/acd4ea
126. S. Carelli, Y. Lee, A. Weber, and W. G. Bessler, “Determining the limits of fast charging of a high-energy lithium-ion NMC/graphite pouch cell through combined modeling and experiments,” J. Electrochem. Soc. 170, 020525 (2023), https://doi.org/10.1149/1945-7111/acb8e1
125. M. Quarti, A. Bayer, and W. G. Bessler, "Trade-off between energy density and fast-charge capability of lithium-ion batteries: A model-based design study of cells with thick electrodes," Electrochem Sci Adv. 2023, 2100161, https://doi.org/10.1002/elsa.202100161
124. W. G. Bessler and J. A. Braun, "Batterie, wie sehr bist Du schon gealtert?", forschung im fokus, Hochschule Offenburg, 78-81 (2023)
2022
123. J. A. Braun, R. Behmann, D. Schmider, and W. G. Bessler, "State of charge and state of health diagnosis of batteries with voltage-controlled models," J. Power Sources 544, 231828 (2022), https://doi.org/10.1016/j.jpowsour.2022.231828, research data on Zenodo, https://doi.org/10.5281/zenodo.6817725
122. M. C. Yagci, T. Feldmann, E. Bollin, M. Schmidt, and W. G. Bessler, "Aging characteristics of stationary lithium-ion battery systems with serial and parallel cell configurations," Energies 15, 3922 (2022), https://doi.org/10.3390/en15113922
121. S. Carelli and W. G. Bessler, "Coupling lithium plating with SEI formation in a pseudo-3D model: a comprehensive approach to describe aging in lithium-ion cells," J. Electrochem. Soc. 169, 050539 (2022). https://doi.org/10.1149/1945-7111/ac716a
120. J. Brucker, R. Behmann, W. G. Bessler, and R. Gasper, "Neural Ordinary Differential Equations for Grey-Box Modelling of Lithium-Ion Batteries on the Basis of an Equivalent Circuit Model," Energies 2022; 15(7):2661. https://doi.org/10.3390/en15072661
119. L. Schiffer, A. V. Shirsath, S. Raël, C. Bonnet, F. Lapicque, and W. G. Bessler, "Electrochemical pressure impedance spectroscopy for polymer electrolyte membrane fuel cells: A combined modeling and experimental analysis," J. Electrochem. Soc. 169, 034503 (2022), https://doi.org/10.1149/1945-7111/ac55cd
118. W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 100-103 (2022)
117. J. Brucker, W. G. Bessler, and R. Gasper, “Modelling of a large-format lithium-iron-phosphate-based lithium-ion battery cell with neural ordinary differential equations,” Upper-Rhine Artificial Intelligence Symposium (UR-AI 2022): AI Applications in Medicine and Manufacturing, Villingen-Schwenningen, Germany (2022)
2021
116. M. Quarti and W. G. Bessler, "Model-based overpotential deconvolution, partial impedance spectroscopy, and sensitivity analysis of a lithium-ion cell with blend cathode," Energy Technology 9, 2001122 (2021). https://doi.org/10.1002/ente.202001122
115. M. C. Yagci, R. Behmann, V. Daubert, J. A. Braun, D. Velten, and W. G. Bessler, "Electrical and structural characterization of large-format lithium iron phosphate cells used in home-storage systems", Energy Technology 9, 2000911 (2021), https://doi.org/10.1002/ente.202000911
114. V. Leible and W. G. Bessler, "Passive hybridization of photovoltaic cells with a lithium-ion battery cell: An experimental proof of concept", J. Power Sources 482, 229050 (2021), https://doi.org/10.1016/j.jpowsour.2020.229050 .
113. T. Wetzel, W. G. Bessler, M. Kamlah, H. Nirschl, "Simulation of mechano-electro-thermal processes in lithium-ion batteries", Energy Technology 9, 2100246 (2021). https://doi.org/10.1002/ente.202100246
112. J. Brucker, W. G. Bessler, and R. Gasper, "Grey-box modelling of lithium-ion batteries using neural ordinary differential equations," Energy Informatics 4(Suppl:3):15 (2021), https://doi.org/10.1186/s42162-021-00170-8 .
111. W. G. Bessler, "Zustandsbestimmung von Lithium-Ionen-Batterien: Ein neuer Algorithmus", forschung im fokus 2021, Hochschule Offenburg, 85-89 (2021).
2020
110. S. Carelli and W. G. Bessler, “Prediction of reversible lithium plating with a pseudo-3D lithium-ion battery model”, J. Electrochem. Soc. 167, 100515 (2020), DOI: 10.1149/1945-7111/ab95c8
109. P. Anitha Sukkurji, I. Isaac, S. Abhished Singaraju, L. Velasco Estrada, J. Aghassi-Hagmann, W. Bessler, H. Hahn, M. Botros, B. Breitung, “Tailored silicon/carbon compounds for printed Li‐ion anodes,” Batteries & Supercaps 3, 1-9 (2020), DOI: 10.1016/j.coelec.2020.04.017
108. A.V. Shirsath, S. Raël, C. Bonnet, L. Schiffer, W. G. Bessler, and F. Lapicque, “Electrochemical pressure impedance spectroscopy: a promising alternative to electrochemical impedance spectroscopy for investigation of mass transfer phenomena in polymer electrolyte membrane fuel cells,” Current Opinion in Electrochemistry 20, 82-87 (2020), DOI: 10.1016/j.coelec.2020.04.017
107. W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 129-132 (2020)
2019
106. M. Mayur, M. C. Yagci, S. Carelli, P. Margulies, D. Velten, and W. G. Bessler, "Identification of stoichiometric and microstructural parameters of a lithium-ion cell with blend electrode," Phys. Chem. Chem. Phys. 21, 23672-23684 (2019), DOI: 10.1039/c9cp04262h
105. M. Mayur, S. C. DeCaluwe, B. L. Kee, W. G. Bessler, "Modeling and simulation of the thermodynamics of lithium-ion battery intercalation materials in the open-source software Cantera," Electrochim. Acta 323, 134797 (2019), DOI: 10.1016/j.electacta.2019.134797
104. S. Carelli, M. Quarti, M. C. Yagci, W. G. Bessler, "Modeling and Experimental Validation of a High-Power Lithium-Ion Pouch Cell with LCO/NCA Blend Cathode" J. Electrochem. Soc. 166, A2990-A3003 (2019), DOI: 10.1149/2.0301913jes
103. J. P. Neidhardt, W. G. Bessler, "Microkinetic Modeling of Nickel Oxidation in Solid Oxide Cells: Prediction of Safe Operating Conditions" Chem. Ing. Tech. 91, No. 6, 843–855 (2019), DOI: 10.1002/cite.201800197
102. C. Kupper, S. Spitznagel, H. Döring, M. A.Danzer, C. Gutierrez, A. Kvashad, W. G. Bessler, "Combined modeling and experimental study of the high-temperature behavior of a lithium-ion cell: Differential scanning calorimetry, accelerating rate calorimetry and external short circuit", Electrochim. Acta 306, 209-219 (2019), DOI: 10.1016/j.electacta.2019.03.079
101. L. Schiffer, D. Grübl, W. G. Bessler, "Model-based analysis of Electrochemical Pressure Impedance Spectroscopy (EPIS) for PEM Fuel Cells", Proceedings EFCF 2019 - Low-temperature Fuel Cells, Electrolyzers and H2 Processing, ISBN 978-3-905592-24-5, Chapter 3, 70-77 (2019)
2018
100. C. Kupper, B. Weißhar, S. Rißmann, and W. G. Bessler, "End-of-life prediction of a lithium-ion battery cell based on mechanistic aging models of the graphite electrode" J. Electrochem. Soc. 165, A3468-A3480 (2018), DOI: 10.1149/2.0941814jes.
99. R. J. Kee, P. Weddle, H. Zhu, G. Jackson, A. Colclasure, W. G. Bessler, and S. DeCaluwe, "On the fundamental and practical aspects of modeling complex electrochemical kinetics and transport", J. Electrochem. Soc. 165, E637-E658 (2018), DOI: doi.org/10.1149/2.0241813jes.
98. M. Mayur, M. Gerard, P. Schott, and W. G. Bessler, "Lifetime prediction of a Polymer Electrolyte Membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model," Energies, 11, 2054 (2018), DOI: 10.3390/en11082054
97. F. Hall, J. Touzri, S. Wußler, H. Buqa, and W. G. Bessler, "Experimental Investigation of the Thermal and Cycling Behavior of a Lithium Titanate-based Lithium-ion Pouch Cell," J. Energy Storage 17, 109-117 (2018), DOI: 10.1016/j.est.2018.02.012.
96. W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 83-86 (2018)
2017
95. B. Weißhar and W. G. Bessler, "Model-Based Lifetime Prediction of an LFP/Graphite Lithium-ion Battery in a Stationary Photovoltaic Battery System," J. Energy Storage 14, 179-191, DOI: 10.1016/j.est.2017.10.002 (2017).
94. M. Mayur and W. G. Bessler, “Two-Dimensional Computational Fluid Dynamics Analysis of Transport Limitations of Different Electrolyte Systems in a Lithium-Air Button Cell Cathode,” J. Electrochem. Soc. 164, E3489-E3498, DOI: 10.1149/2.0451711jes (2017).
93. T. Jahnke, M. Zago, A. Casalegno, W. G. Bessler, and A. Latz, “A transient multi-scale model for direct-methanol fuel cells,” Electrochim. Acta 232, 215-225, DOI: 10.1016/j.electacta.2017.02.116 (2017).
92. S. Joos, B. Weißhar, and W. G. Bessler, “Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis,” J. Power Sources 348, 201-211, DOI: 10.1016/j.jpowsour.2017.02.063 (2017).
91. C. Kupper and W. G. Bessler, “Multi-Scale Thermo-Electrochemical Modeling of Perfor-mance and Aging of a LiFePO4/Graphite Lithium-Ion Cell,” J. Electrochem. Soc. 164, A304-A320, DOI: 10.1149/2.0761702jes (2017).
90. C. Kupper and W. G. Bessler, "Der Batteriealterung auf den Grund gehen", forschung im fokus, Hochschule Offenburg, 86-88 (2017)
2016
89. B. Weißhar and W. G. Bessler, “Model-Based Degradation Assessment of Lithium-Ion Batteries in a Smart Microgrid,” International Conference on Smart Grid and Clean Energy Technologies, Offenburg, Germany, 134-138, IEEE Xplore, DOI: 10.1109/ICSGCE.2015.7454284 (2016).
88. D. Grübl, B. Bergner, D. Schröder, J. Janek, and Wolfgang G. Bessler, „Multi-Step Reaction Mechanisms in Non-Aqueous Lithium-Oxygen Batteries with Redox Mediator: A Model-Based Study,” J. Phys. Chem. C 120 (43), 24623–24636, DOI: 10.1021/acs.jpcc.6b07886 (2016).
87. F. Hall, S. Wußler, H. Buqa, and W. G. Bessler, “On the asymmetry of discharge/charge curves of lithium-ion battery intercalation electrodes,” J. Phys. Chem. C, 120 (41), 23407–23414, DOI: 10.1021/acs.jpcc.6b07949 (2016).
86. D. Grübl, J. Janek, and W. G. Bessler, “Electrochemical pressure impedance spectroscopy (EPIS) as diagnostic method for electrochemical cells with gaseous reactants: A model-based analysis,” J. Electrochem. Soc. 163, A599-A610, DOI: 10.1149/2.1041603jes (2016).
85. T. Jahnke, G. Futter, A. Latz, T. Malkow, G. Papakonstantinou, G. Tsotridis, P. Schott, M. Gérard, M. Quinaud, M. Quiroga, A.A. Franco, K. Malek, F. Calle-Vallejo, R. Ferreira de Morais, T. Kerber, P. Sautet, D. Loffreda, S. Strahl, M. Serra, P. Polverino, C. Pianese, M. Mayur, W. G. Bessler, and C. Kompis, “Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale,” J. Power Sources 304, 207-233, DOI: 10.1016/j.jpowsour.2015.11.041 (2016).
84. S. Lueth, U. S. Sauter, and W. G. Bessler, “An agglomerate model of lithium-ion battery cathodes,” J. Electrochem. Soc. 163, A210-A222, DOI: 10.1149/2.0291602jes (2016).
83. A. A. Franco, M. L. Doublet, and W. G. Bessler, Editors, “Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage,” Springer, London (2016).
82. W. G. Bessler, "Elektrische Energiespeicherung mit Batterien und Brennstoffzellen", forschung im fokus, Hochschule Offenburg, 116-119 (2016)
2015
81. M. Mayur, S. Strahl, A. Husar, and W. G. Bessler, “A multi-timescale modeling methodology for PEMFC performance and durability in a virtual fuel cell car,” Int. J. Hydrogen Energy 40, 16466-16476, DOI: 10.1016/j.ijhydene.2015.09.152 (2015).
80. D. Grübl and W. G. Bessler, “Cell design concepts for aqueous lithium oxygen batteries: A model-based assessment,” J. Power Sources 297, 481-491, DOI: 10.1016/j.jpowsour.2015.07.058 (2015).
79. S. Wahl, A. Gallet Segarra, P. Horstmann, M. Carré, W. G. Bessler, F. Lapicque, and K. A. Friedrich, “Modeling of a thermally integrated 10 kWe planar SOFC System with anode offgas recycling and internal reforming by discretisation in flow direction,” J. Power Sources 279, 656-666, DOI: 10.1016/j.jpowsour.2014.12.084 (2015).
78. C. Bao and W. G. Bessler, “Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis,” J. Power Sources, 278, 675-682, DOI: 10.1016/j.jpowsour.2014.12.045 (2015).
77. C. Bao and W. G. Bessler, "Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development", J. Power Sources 275, 922-934, DOI: 10.1016/j.jpowsour.2014.11.058 (2015).
76. W. G. Bessler, „Wie lange lebt die Brennstoffzelle? Ein EU-Forschungsprojekt zu Wasserstoffautos“, campus Magazin der Hochschule Offenburg 38, Sommer 2015, 90-91 (2015).
75. D. Grübl, B. Bergner, J. Janek, and W. G. Bessler, “Dynamic Modeling of the Reaction Mechanism in a Li/O2 Cell: Influence of a Redox Mediator,” ECS Trans. 69, 11-21 (2015).
74. A. Weidlich, U. Hochberg, W. G. Bessler, „Power-to-Gas optimiert einsetzen“, forschung im fokus, Hochschule Offenburg, 124-125 (2015).
2014
73. N. Tanaka and W. G. Bessler, “Numerical investigation of kinetic mechanism for runaway thermo-electrochemistry in lithium-ion cells,” Solid State Ionics 262, 70-73 (2014).
72. T. Danner, B. Horstmann, D. Wittmaier, N. Wagner, and W. G. Bessler, “Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li-O2 batteries:Experiments and modeling,” J. Power Sources 264, 320-332 (2014).
71. A. F. Hofmann, D. N. Fronczek, and W. G. Bessler, “Mechanistic modeling of capacity loss and polysulfide shuttle in lithium-sulfur batteries”, J. Power Sources 259, 300-310 (2014).
70. V. Yurkiv, R. Costa, Z. Ilhan, A. Ansar, and W. G. Bessler, “Impedance of the surface double layer of LSCF/CGO composite cathodes: An elementary kinetic model”, J. Electrochem. Soc. 161, F480-F492 (2014).
69. P. Hartmann, D. Grübl, H. Sommer, J. Janek, W. G. Bessler, and P. Adelhelm, “Pressure dynamics in metal-oxygen (metal-air) batteries: a case study on sodium superoxide (NaO2) cells,” J. Phys. Chem. C 118, 1461-1471 (2014).
68. S. Tippmann, D. Walper, L. Balboa, B. Spier, and W. G. Bessler, “Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior,” J. Power Sources 252, 305-316 (2014).
67. W. G. Bessler, „Computergestützte Batterie- und Brennstoffzellentechnik“, forschung im fokus, Hochschule Offenburg, 77-79 (2014).
66. D. Grübl, T. Danner, V. P. Schulz, A. Latz, W. G. Bessler, “Multi-methodology modeling and design of lithium-air cells with aqueous electrolyte,” ECS Trans. 62, 137-149 (2014).
65. V. Yurkiv, J. P. Neidhardt, W. G. Bessler, „Elementary kinetic modeling of (electro-)chemical degradation mechanisms of the SOFC anode,” Proceedings of the 11th European SOFC Forum, Lucerne, Switzerland, p. B0609 (2014).
2013
64. B. Horstmann, B. Gallant, R. Mitchell, W. G. Bessler, Y. Shao-Horn, and M. Z. Bazant, “Rate-dependent morphology of Li2O2 growth in Li-O2 batteries,” J. Phys. Chem. Lett. 4, 4217-4222 (2013).
63. M. Henke, C. Willich, C. Westner, F. Leucht, J. Kallo, W. G. Bessler, and K. A. Friedrich, “A validated multi-scale model of a SOFC stack at elevated pressure,” Fuel Cells 13, 773-780 (2013).
62. D. N. Fronczek and W. G. Bessler, “Insight into lithium-sulfur batteries: Elementary kinetic modeling and impedance simulation,” J. Power Sources 244, 183-188 (2013).
61. B. Horstmann, T. Danner, and W. G. Bessler, “Precipitation in aqueous lithium-oxygen batteries: A model-based analysis,” Energy Environ. Sci. 6, 1299-1314 (2013).
60. G. Schiller, C. Auer, W. G. Bessler, C. Christenn, Z. Ilhan, P. Szabo, H. Ax, B. Kapadia, W. Meier, “A novel concept for the investigation of gas composition during operation of a solid oxide fuel cell through one-dimensional gas-phase laser Raman spectroscopy,”, Appl. Phys. B 111, 29-38 (2013).
59. T. Ou, F. Delloro, W. G. Bessler, A. Thorel, and C. Nicolella, "Proof of concept for the Dual Membrane Cell. Part II: Mathematical modeling of charge transport and reaction in the dual membrane," J. Electrochem. Soc. 160, F367-F374 (2013).
58. W. G. Bessler, „Multi-scale modelling of solid oxide fuel cells,“ in: Solid Oxide Fuel Cells: From Materials to System Modeling, M. Ni and T. S. Zhao, Editors, RSC Energy and Environment Series No. 7 (Royal Society of Chemistry, Cambridge, UK), 219-246 (2013).
57. W. G. Bessler, „Lithiumrevolution für Energiewende und Elektromobilität“, campus Magazin der Hochschule Offenburg, Winter 2013/2014, 26-27 (2013).
56. V. Yurkiv, A. Latz, and W. G. Bessler, “Modeling and Simulation the Influence of Solid Carbon Formation on SOFC Performance and Degradation,” ECS Trans. 57, 2637-2647 (2013).
55. J. P. Neidhardt, R. J. Kee, and W. G. Bessler, “Electrode reoxidation in solid-oxide cells: Detailed modeling of nickel oxide film growth,” ECS Trans. 57, 2573-2582 (2013).
54. T. Jahnke and W. G. Bessler, “Modeling ruthenium dissolution in direct-methanol fuel cells,” Proceedings of the 5th International Conference Fundamentals and Development of Fuel Cells (FDFC), Karlsruhe, Germany, p. SPS206 (2013).
53. J. P. Neidhardt, V. Yurkiv, and W. G. Bessler, “Spatiotemporal simulation of nickel oxide and carbon phases formation in solid oxide fuel cells (SOFC),” Proceedings of the 5th International Conference Fundamentals and Development of Fuel Cells (FDFC), Karlsruhe, Germany, p. P104 (2013).
2012
52. J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, and W. G. Bessler, "A flexible framework for modeling multiple solid, liquid and gaseous phases in batteries and fuel cells," J. Electrochem. Soc. 159, A1528-A1542 (2012).
51. V. Yurkiv, A. Gorski, W. G. Bessler, H.-R. Volpp, “Density functional theory study of heterogeneous CO oxidation over an oxygen-enriched yttria-stabilized zirconia surface,” Chem. Phys. Lett. 543, 213-217 (2012).
50. C. Bao and W. G. Bessler, "A computationally efficient steady-state electrode-level and 1D+1D cell-level fuel cell model," J. Power Sources 210, 67-80 (2012).
49. V. Yurkiv, A. Utz, A. Weber, E. Ivers-Tiffée, H.-R. Volpp, and W. G. Bessler, "Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes," Electrochim. Acta 59, 573-580 (2012).
48. A. Bertei, A. S. Thorel, W. G. Bessler, and C. Nicolella, "Mathematical modeling of mass and charge transport and reaction in a solid oxide fuel cell with mixed ionic conduction," Chem. Eng. Sci. 68, 606-616 (2012).
47. R. Costa, R. Spotorno, N. Wagner, Z. Ilhan, V. Yurkiv, W. G. Bessler, and A. Ansar, “Development and Characterization of LSCF/CGO composite cathodes for SOFCs,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B04-48 (2012).
46. J. P. Neidhardt and W. G. Bessler, “Oxidation of nickel in solid oxide fuel cell anodes: A 2D kinetic modeling approach,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B05-17 (2012).
45. V. Yurkiv, R. Costa, Z. Ilhan, A. Ansar, and W. G. Bessler, “Elementary Kinetics and Mass Transport in LSCF-Based Cathodes: Modeling and Experimental Validation,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-6 (2012).
44. A. Gorski, V. Yurkiv, W. G. Bessler, and H.-R. Volpp, “CO Oxidation at the SOFC Ni/YSZ Anode: Langmuir-Hinshelwood and Mars-van-Krevelen versus Eley-Rideal Reaction Pathways,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-81 (2012).
43. J. P. Neidhardt, D. N. Fronczek, T. Jahnke, T. Danner, B. Horstmann, and W. G. Bessler, “A flexible modeling framework for multi-phase management in SOFCs and other electrochemical cells,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B10-130 (2012).
42. C. Willich, M. Henke, C. Westner, F. Leucht, W. G. Bessler, J. Kallo, and K. Andreas Friedrich, “Fuel Variation in a Pressurized SOFC,” Proceedings of the 10th European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, p. B11-123 (2012).
41. S. Hink, N. Wagner, W. G. Bessler, E. Roduner, “Impedance spectroscopic investigation of proton conductivity in Nafion using transient electrochemical atomic force microscopy (AFM),” Membranes 2, 237-252 (2012).
2011
40. M. Henke, J. Kallo, K. A. Friedrich, and W. G. Bessler, "Influence of Pressurization on SOFC Performance and Durability: A Theoretical Study," Fuel Cells 11, 581-591 (2011).
39. E. Mutoro, C. Hellwig, B. Luerßen, S. Günther, W. G. Bessler, and J. Janek, "Electrochemically induced oxygen spillover and diffusion on Pt(111): PEEM imaging and kinetic modelling," Phys. Chem. Chem. Phys. 13, 12798–12807 (2011).
38. S. Seidler, M. Henke, J. Kallo, W. G. Bessler, U. Maier, and K. A. Friedrich, "Pressurized Solid Oxide Fuel Cells: Experimental Studies and Modeling," J. Power Sources 196, 7195-7202 (2011).
37. M. Eschenbach, R. Coulon, A. A. Franco, J. Kallo, and W. G. Bessler, "Multi-scale modelling of fuel cells: From the cell to the system," Solid State Ionics 192, 615-618 (2011).
36. W. G. Bessler and T. Nilges, "Trendberichte Festkörperchemie 2010", Nachrichten aus der Chemie 59, 246-253 (2011).
35. F. Leucht, W. G. Bessler, J. Kallo, K. A. Friedrich, and H. Müller-Steinhagen, "Fuel Cell System Modelling for SOFC/GT Hybrid Power Plants, Part I: Modelling and simulation framework," J. Power Sources 196, 1205-1215 (2011).
34. V. Yurkiv, D. Starukhin, H.-R. Volpp, and W. G. Bessler, "Elementary reaction kinetics of the CO/CO2/Ni/YSZ electrode," J. Electrochem. Soc. 158, B5-B10 (2011).
2010
33. W. G. Bessler, M. Vogler, H. Störmer, D. Gerthsen, A. Utz, A. Weber, and E. Ivers-Tiffée, "Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells," Phys. Chem. Chem. Phys. 12, 13888-13903 (2010).
32. M. Vogler, M. Horiuchi, and W. G. Bessler, "Modeling, simulation and optimization of a no-chamber solid oxide fuel cell operated with a flat-flame burner," J. Power Sources 195, 7067-7077 (2010).
31. W. G. Bessler, S. Gewies, C. Willich, G. Schiller, and K. A. Friedrich, "Spatial distribution of electrochemical performance in a segmented SOFC: A combined modeling and experimental study," Fuel Cells 10, 411-418 (2010).
2009
30. M. Vogler, A. Bieberle-Hütter, L. J. Gauckler, J. Warnatz, and W. G. Bessler, "Modelling study of surface reactions, diffusion, and spillover at a Ni/YSZ patterned anode," J. Electrochem. Soc. 156, B663-B672 (2009).
29. M. Horiuchi, F. Katagiri, J. Yoshiike, S. Suganuma, Y. Tokutake, H. Kronemayer, and W. G. Bessler, "Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane," J. Power Sources 189, 950-957 (2009).
28. S. B. Adler and W. G. Bessler, "Elementary kinetic modeling of SOFC electrode reactions," in: Handbook of Fuel Cells - Fundamentals, Technology and Applications, Vol. 5, W. Vielstich, H. Yokokawa, and H.A. Gasteiger, Editors (John Wiley & Sons, Chichester, UK), 441-462 (2009).
2008
27. S. Gewies and W. G. Bessler, "Physically based impedance modeling of Ni/YSZ cermet anodes," J. Electrochem. Soc. 155, B937-B952 (2008).
26. J. Rossmeisl and W. G. Bessler, "Trends in catalytic activity for SOFC anode materials," Solid State Ionics 178, 1694-1700 (2008).
25. T. Lee, W. G. Bessler, J. Yoo, C. Schulz, J. B. Jeffries, and R. K. Hanson, "Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames," Appl. Phys. B 93, 677-685 (2008).
24. W. G. Bessler, S. Gewies, and M. Vogler, "A new framework for detailed electrochemical modeling of solid oxide fuel cells," Electrochim. Acta 53, 1782-1800 (2007).
23. W. G. Bessler, "Rapid impedance modeling via potential step and current relaxation simulations," J. Electrochem. Soc. 154, B1186-B1191 (2007).
22. W. G. Bessler and S. Gewies, "Gas concentration impedance of solid oxide fuel cell anodes. II. Channel geometry," J. Electrochem. Soc. 154, B548-B559 (2007).
21. H. Kronemayer, D. Barzan, M. Horiuchi, S. Suganuma, Y. Tokutake, C. Schulz, and W. G. Bessler, "A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane and butane," J. Power Sources 166, 120-126 (2007).
20. W. G. Bessler, J. Warnatz, and D. G. Goodwin, "The influence of equilibrium potential on hydrogen oxidation kinetics of SOFC anodes," Solid State Ionics 177, 3371-3383 (2007).
2006
19. M. Tutuianu, O. Inderwildi, W. G. Bessler, and J. Warnatz, "Competitive adsorption of NO, NO2, CO2 and H2O on BaO(100): A quantum chemical study," J. Phys. Chem. B 110, 17484-17492 (2006).
18. W. G. Bessler, "Gas concentration impedance of solid oxide fuel cell anodes. I. Stagnation point flow geometry," J. Electrochem. Soc. 153, A1492-A1504 (2006).
2005
17. W. G. Bessler, “A new computational approach for SOFC impedance based on detailed electrochemical reaction-diffusion models,” Solid State Ionics 176, 997-1011 (2005).
16. J. W. Daily, W. G. Bessler, C. Schulz, V. Sick, and T. Settersten, "Nonstationary collisional dynamics in determining nitric oxide laser-induced fluorescence spectra," AIAA J. 43, 458-464 (2005).
15. H. Kronemayer, W. G. Bessler, and C. Schulz "Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry," Appl. Phys. B81, 1071-1074 (2005).
14. T. Lee, W. G. Bessler, H. Kronemayer, C. Schulz , and J. B. Jeffries, "Quantitative temperature measurements in high-pressure flames with multi-line NO-LIF thermometry," Appl. Opt. 44, 6718-6728 (2005).
13. A. Franke, W. Koban, J. Olofsson, C. Schulz, W. G. Bessler, R. Reinmann, A. Larsson, and M. Aldén, "Application of advanced laser diagnostics for the investigation of the ionization sensor signal in a combustion bomb," Appl. Phys. B81, 1135-1142 (2005).
12. W. G. Bessler, M. Hofmann, F. Zimmermann, G. Suck, J. Jakobs, S. Nicklitzsch, T. Lee, J. Wolfrum, and C. Schulz "Quantitative in-cylinder NO-LIF imaging in a realistic gasoline engine with spray-guided direct injection," Proc. Combust. Inst. 30, 2667-2674 (2005).
11. J. B. Jeffries, C. Schulz , D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, and R. K. Hanson, "UV Absorption of CO2 for temperature diagnostics of hydrocarbon combustion applications," Proc. Combust. Inst. 30, 1591-1599 (2005).
2004
10. W. G. Bessler and C. Schulz "Quantitative multi-line NO-LIF temperature imaging," Appl. Phys. B78, 519-533 (2004).
9. T. Lee, W. G. Bessler, C. Schulz , M. Patel, J. B. Jeffries, and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame," Appl. Phys. B79, 427-430 (2004).
2003
8. M. Hofmann, W. G. Bessler, C. Schulz, and H. Jander, "Laser-induced incandescence (LII) for soot diagnostics at high pressure," Appl. Opt., 2052-2062 (2003).
7. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Carbon dioxide UV laser-induced fluorescence in high-pressure flames," Chem. Phys. Lett. 375, 344-349 (2003).
6. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation," Appl. Opt. 42, 2031-2042 (2003).
5. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames: III. Comparison of A-X Strategies," Appl. Opt. 42, 4922-4936 (2003).
2002
4. W. G. Bessler, C. Schulz, T. Lee, D. I. Shin, M. Hofmann, J. B. Jeffries, J. Wolfrum, and R. K. Hanson, "Quantitative NO-LIF imaging in high-pressure flames," Appl. Phys. B 75, 97-102 (2002).
3. W. G. Bessler, C. Schulz, T. Lee, J. B. Jeffries, and R. K. Hanson, "Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation," Appl. Opt. 41, 3547-3557 (2002).
2. J. B. Bell, M. S. Day, J. F. Grcar, W. G. Bessler, C. Schulz, P. Glarborg, and A. D. Jensen, "Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame," Proc. Combust. Inst. 29, 2195-2202 (2002).
2001
1. W. G. Bessler, F. Hildenbrand, and C. Schulz, "Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO," Appl. Opt. 40, 748-756 (2001).
18. Michael Quarti, "Modellierung, simulative Charakterisierung und Parameterstudie von Lithium-Ionen-Batterien mit einer Mischelektrode", Karlsruher Institut für Technologie (2024). https://publikationen.bibliothek.kit.edu/1000172881
17. Lutz Schiffer, "Electrochemical pressure impedance spectroscopy for studying mass transport processes in polymer electrolyte membrane fuel cells: A model-based analysis", Karlsruher Institut für Technologie, Karlsruhe (2023). https://doi.org/10.5445/IR/1000158854
16. Serena Carelli, "Mechanistic modelling of electrochemical ageing reactions at the graphite anode of lithium-ion batteries", Karlsruher Institut für Technologie, Karlsruhe (2021). https://publikationen.bibliothek.kit.edu/1000130824
15. Parvathy Anitha, "Advanced Anode and Cathode Materials for Li-ion Batteries: Application to Printing Methodology", Karlsruher Institut für Technologie (2021). https://publikationen.bibliothek.kit.edu/1000137243
14. Christian Kupper, "Lebensdauer und Sicherheit von Lithium-Ionen-Batterien für die dezentrale Speicherung regenerativer Energien: Modellbasierte Untersuchung einer Lithiumeisenphosphatzelle", Universität Freiburg (2019). https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=nid%3D122005206X
13. Daniel Grübl, "Dynamic modeling and simulation of electrochemistry and transport in metal-air batteries", Universität Gießen (2016). https://justfind.hds.hebis.de/Record/HEB400954915
12. Sabine Lüth, "Untersuchung des Einflusses der Mikrostruktur von Kathoden auf das Entladeverhalten von Lithiumionenhalbzellen", Universität Stuttgart (2016). https://stg.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC02&sp=SAKSWB-IdNr1546920463
11. Simon Tippmann, "Modellierung und experimentelle Charakterisierung des Degradationsverhaltens durch Lithium-Plating an Lithium-Ionen-Zellen unter automobilen Betriebsbedingungen", Universität Stuttgart (2015). https://stg.ibs-bw.de/aDISWeb/app?service=direct/0/Home/$DirectLink&sp=SOPAC02&sp=SAKSWB-IdNr848412621
10. David Fronczek, "Experimental characterization, design improvements, and physically-based modeling of lithium-sulfur cells with Li2S-based positive electrodes", Universität Stuttgart (2015). http://dx.doi.org/10.18419/opus-2389
9. Nanako Tanaka, "Modeling and simulation of thermo-electrochemistry of thermal runaway in lithium-ion batteries", Universität Stuttgart (2015). http://dx.doi.org/10.18419/opus-2362
8. Timo Danner, "Modeling and experimental investigation of transport processes in the porous cathode of aqueous Li-air batteries", Universität Stuttgart (2015). http://dx.doi.org/10.18419/opus-2361
7. Jonathan Neidhardt, "Nickel oxidation in solid oxide cells: Modeling and simulation of multi-phase electrochemistry and multi-scale transport", Universität Stuttgart (2013). http://dx.doi.org/10.18419/opus-2179
6. Christian Hellwig, "Modeling, simulation and experimental investigation of the thermal and electrochemical behavior of a LiFePO4-based lithium-ion battery", Universität Stuttgart (2013). http://dx.doi.org/10.18419/opus-1400
5. Romain Coulon, "Modélisation de la dégradation chimique de membranes dans les piles à combustibles à membrane électrolyte polymère", Université de Grenoble (2012). https://tel.archives-ouvertes.fr/tel-00767412/
4. Vitaliy Yurkiv, "Modeling and validation of heterogeneous catalytic processes in fuel cells", Universität Heidelberg (2010). http://archiv.ub.uni-heidelberg.de/volltextserver/11445/
3. Marcel Vogler, "Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system", Universität Heidelberg (2009). http://archiv.ub.uni-heidelberg.de/volltextserver/9532
2. Stefan Gewies, "Modellgestützte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden", Universität Heidelberg (2009). http://archiv.ub.uni-heidelberg.de/volltextserver/9032/
1. Monica Tutuianu, "Quantum mechanical modeling of surface reactions in storage catalytic converters", Universität Heidelberg (2007). http://archiv.ub.uni-heidelberg.de/volltextserver/7477/
We use the Open-Source Software Cantera in our research group, among others. Here we provide Cantera input files for models we have published:
- Schmider_2023_Batteries.yaml: Cantera input file for an NCA-LCO/graphite lithium-ion cell. See D. Schmider and W. G. Bessler, "Thermo-Electro-Mechanical Modeling and Experimental Validation of Thickness Change of a Lithium-Ion Pouch Cell with Blend Positive Electrode", Batteries 9(7), 354 (2023), DOI: 10.3390/batteries9070354
- Carelli_2020_JElectrochemSoc.cti: Cantera input file for an NCA-LCO/graphite lithium-ion cell. See S. Carelli and W. G. Bessler, "Prediction of reversible lithium plating with a pseudo-3D lithium-ion battery model" J. Electrochem. Soc. 167, 100515 (2020), DOI: 10.1149/1945-7111/ab95c8
- Carelli_2019_JElectrochemSoc.cti: Cantera input file for an NCA-LCO/graphite lithium-ion cell. See S. Carelli, M. Quarti, M. C. Yagci, W. G. Bessler, "Modeling and Experimental Validation of a High-Power Lithium-Ion Pouch Cell with LCO/NCA Blend Cathode" J. Electrochem. Soc. 166, A2990-A3003 (2019), DOI: 10.1149/2.0301913jes
- Mayur_2019_ElectrochimActa.cti: Cantera input file for an LCO/graphite lithium-ion cell. See M. Mayur, S. DeCaluwe, B. L. Kee, W. G. Bessler, "Modeling thermodynamics and kinetics of intercalation phases for lithium-ion batteries in Cantera", Electrochim. Acta 323, 134797 (2019), DOI: 10.1016/j.electacta.2019.134797
- Kupper_2017_JElectrochemSoc.cti: Cantera input file for an LFP/graphite lithium-ion cell. See C. Kupper and W. G. Bessler, “Multi-Scale Thermo-Electrochemical Modeling of Performance and Aging of a LiFePO4/Graphite Lithium-Ion Cell”, J. Electrochem. Soc. 164, A304-A320 (2017), DOI: 10.1149/2.0761702jes